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Phase diagram of a model for*He-*He mixtures in three dimensions
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A lattice model of3He-*He mixtures which takes into account the continuous rotational symmegyad
the superfluid degrees of freedom He is studied in the molecular-field approximation and by Monte Carlo
simulations in three dimensions. In contrast to its two-dimensional version, for reasonable values of the
interaction parameters the resulting phase diagram resembles that observed experimerttaiyfée mix-
tures, for which phase separation occurs as a consequence of the superfluid transition. The corresponding
continuum Ginzburg-Landau model with two order parameters descrithileg'He mixtures near tricriticality
is derived from the considered lattice model. All coupling constants appearing in the continuum model are
explicitly expressed in terms of the mean concentratiofiH#, the temperature, and the microscopic interac-
tion parameters characterizing the lattice system.
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[. INTRODUCTION function that describes the superfluid state vanishes at both
interfaceq1,2]. For films of *He-*He mixture the situation is

Spatial confinements of systems undergoing continuoukess clear. In these systems*He-rich layer forms near the
phase transitions perturb the fluctuation spectrum of the corsubstrate-fluid interface, which may become superfluid al-
responding ordering degrees of freedom. This leads to a deeady above tha line [9—-11], whereas there is an enrich-
pendence of the free energy of the systems on the distaneceent of He near the opposing fluid-vapor interface. Thus
between the confining walls which can be expressed in termihe two interfaces impose a nontrivial concentration profile,
of universal scaling function. Their gradient renders the sowhich in turn couples to the superfluid order parameter. The
called critical Casimir forces which are the analogs of theexperiment of Ref[7] reports a repulsive Casimir force at
well known electromagnetic Casimir or dispersion forces. the tricritical point, but it is not immediately obvious that the

Recent developments in the theory of Casimir forces inconcentration profile induces effectively nonsymmetric
critical and correlated fluidgl] have provided a strong mo- boundary conditions for the superfluid order parameter, i.e.,
tivation for testing them experimentally in various systems.symmetry-breaking boundary conditions at the substrate-
Capacity studies ofHe wetting films near the superfluid fluid interface(also known as the so-called extraordinary or
transitionT, [2] have confirmed the existence of the critical normal universality clagsand Dirichlet boundary conditions
Casimir effect and for temperatures>T, quantitative at the fluid-vapor interface. The superfluid order parameter
agreement with corresponding theoretical predictions hapossesses a continuous2Dsymmetry so that if the layer is
been found[3-5]. Similar effects have been observed for effectively two dimensional it is in the Kosterlitz-Thouless
wetting films of binary liquid mixtures near the critical end phase with the superfluid order parameter equal to ZEZb
point of their demixing transitiorj6]. Additional evidence On the other hand, upon approaching thdine from the
for the critical Casimir force and detailed data have beerhigh-temperature side the superfluid layer thickens due to the
reported for wetting films at solid substrates #fle*He  increase of the correlation length and a dimensional cross-
mixtures near their tricritical poir{t7,8]. These latter experi- over to a three-dimensional superfluid phase with nonzero
ments have also raised new interesting challenges for therder parameter should take pldd&]. In order to be able to
theory, which have motivated the present work. Among theminterpret and to understand the features of the Casimir force
is the sign and the amplitude of the Casimir force or, moreand other surface and finite-size effects®iHe-*He mixture
generally, the form of its scaling function for different values films near the tricritical point systematic studies of a model
of the concentration ofHe atoms. Theory predicts that these system are needed. Due to the universal character of the
features of the Casimir force crucially depend on the type ofritical Casimir force it is sufficient to choose as a model
boundary conditions which the confining surfaces impose osystem one which belongs to the same universality class as
the order parametdrl]. For example, the force should be the actual physical system. The prerequisite of such future
attractive for symmetric boundary conditions and repulsivestudies is a detailed analysis of the bulk properties of such a
for nonsymmetric boundary conditions. The distinction be-suitable model. This is the purpose of the present paper. The
tween the surface universality classes is also relevant. In themodel should resemble the main features of the bulk phase
case of puré'He films near the\ point the boundary condi- diagram of 3He-*He mixtures in three dimensionsl 3)
tions at the two confining interfaces of the wetting layerand take into account the continuous rotationé)@ymme-
seem to be very well approximated by symmetric Dirichlettry of the superfluid degrees of freedom tfle.
boundary conditions forming the so-called ordinary surface The general features of phase separation and superfluidity
universality class, because the quantum-mechanical wava three-dimensional mixtures of liquidHe and “He are
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well known from experiment§14]. In pure “He there is a With an occupation variablg, taking the values 0 or 1, and
transition from a normal fluid to a superfluid phase characa phases; (0= 6,<2) which mimics the phase of thtHe
terized by a complex order parameter*He is diluted with ~ wave function. A®*He atom at sité corresponds tt, =0 and
3He, the superfluid transition temperature is depressed. Sk *He atom tot;=1. Since the model in this reduced version
multaneously, the tendency toward phase separation irfloes not allow for unoccupied sites, the model does not ex-
creases and at a criticdHe concentration the mixture un- hibit a vapor phaseln future studies the model can be gen-
dergoes a first-order phase transition intdke-rich and a  eralized to incorporate the vapor phase; here it is left out for
3He-rich phase, of which only th&He-rich phase is super- reasons of simplicity. 6; reflects the superfluid degrees of
fluid. In the temperaturéHe concentration planeT(x) the  freedom. The model Hamiltonian consists of a lattice gas
line of second-order superfluid transitiofig(x) meets the part describing a binary mixture and a term responsible for
boundary of the two-phase coexistence region at the tricritithe “superfluid” ordering. Since only’He atoms couple to
cal point (T,~87 mKx,~0.67); x=N3/(N3+N,), where the superfluid order parameter the Hamiltonian is taken as
N, i=3, 4, denotes the number of atoms e or “He,
respectively. , _ , , H=—J3, tit,cod 6,— 6,)— KX, tit; +A X t;, (1)
In this paper we consider a simple lattice model known in i i i

the literature as the vectoralized Blume-Emery- i ) )
Griffiths(VBEG) model[15,16]. It is defined in Sec. Il. The Where the first two sums are over nearest-neighbor pairs
bulk phase diagram of the VBEG model was investigatec(i”a and _the last sum is over all lattice sites. The lattice
only in spatial dimensionsi=2 by means of Migdal- Cconstant is taken to be equal to 1.
Kadanoff recursion relationd.5,16]; no tricritical point was In the lattice gas model of théHe-*He binary mixture the
found for any value of the model parameters. Here we studgoupling constank and the fieldA are related to the effec-
the three-dimensional version of this model within thelive “He’He interactions—K; [19],
molecular-field approximation and by Monte Carlo simula-
tions, and we demonstrate that for reasonable values of in- K=KagtKaa=2Kaq, )
teractio_n parameters the resulting ph_ase diagram resemblgﬁd to the chemical potentiajs, and u, of *He and *He,
topologically that observed experimentally for three- :

; : ) . . respectively,
dimensional mixtures, for which the phase separation ap-
pears as a consequence of the superfluid ordering. This is A=z~ g+ 22(Kaz—Kag), 3)
carried out in Sec. Ill and Sec. IV, respectively. In Sec. VI we
derive a two-parameter continuous Landau-Ginzb@)  wherez is the coordination number of the lattice= 2d,
model describing bulk’®He-*He mixtures near a tricritical whered is the spatial dimension of the systezx 6 in the
point starting from the modified VBEG model. The LG ap- present case
proach has many advantages and it is worthwhile to have a In the liquid the effective interactionk,,; are different
LG model with coupling constants explicitly related to the for different & and 8 due to the differences of mass and
measured quantities, such as temperature, superfluid densiftatistics betweerfHe and “He atoms. The coupling con-

cor}centration of’He atoms, or parameters describing inter-stantJ is related[16,27 to a bare, superfluid densipy(T)
actions. We close our paper with a summary and conclusiongy

IIl. THE MODEL J=h2po(T)ad=2/m?, (4)

We consider a simple lattice model 8He-*He mixtures ~ wherem is the mass of &#He atom.a is the mean interpar-
which takes into account the continuous rotation@)®ym- ticle spacing(the lattice parameter in the lattice modérthe
metry of the superfluid degrees of freedom Wde. It is a  superfluid density can be measured from the velocity of third
vectorial generalization of the spin-1 model used by Blumesound and from the response of a torsional oscillg20¥; it
Emery, and Griffiths(BEG) [17] for describing the\ line  has units of mass per unit volunter area in two dimen-
and the tricritical point in®He-*He mixtures. This descrip- sions. Here we are concerned only with the calse0 and
tion does not aim at a quantitatively faithful modeling of the K>0.
actual experimental phase diagrai4]. Instead we strive for When all occupation numbers are equal to 1, up to
capturing its essential physical and topological features, i.egonstants the first term in E(L) corresponds to the classical
the phase segregation in conjunction with the formation of &Y model (the planar rotator modefor pure *He. There-
superfluid phaselnter alia, this means that the model de- fore, in the limit of A— —« the partition function of the
scribed in the following does not capture the finite miscibil- model reduces to that &Y model up to a factoeX*N where
ity of 3He in “He of about 6% at very low temperatures, N is the number of lattice sites.
where the*He in solution behaves as a Fermi liquid and thus  The model as defined above is known in the literature as
would require a fully guantum-mechanical treatm¢b8).  the VBEG model. It was first proposed by Berker and Nelson
This latter aspect has, however, no important physical implif16] and, independently, by Cardy and Scalp[i&] to de-
cations for the phase behavior near the elevated tricriticagcribe thinfilms of *He-*He mixtures, for which the mecha-
temperature which is the focus of the present paper. nism of the superfluid transition is different from thatdn

In this model each simple cubic lattice sites associated =3; there is no spontaneous breaking of the continuous
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symmetry ind=2 [21], i.e., the order parameter does not obtain by minimizinngo with respect top; . In this proce-
become nonzero below the transition temperature. The supegyre, however, the connection betweEp and the Hem-
0

. g . . 3 4 . .
II(mdt trlfc;nsﬁl]onlln fltlmslgf He"He mixtures is of the holtz free energy functional of the order parameters is not
osterlitz-Thouless typ¢12]. straightforward[23]. Minimizing ®/N+ Tr(p;) with re-

In d=2 the phase diagram of the VBEG model was ob- . : o :
tained by means of the Migdal-Kadanoff renormalization-Spect top; and with 7 as a Lagrange multiplier, one obtains

group method15,16|. Its features are qualitatively similar to pi=e AhiTr(e AM), (8)

those observed experimentally for the corresponding three-

dimensional mixtures, except that there is no true tricriticalwhereh; is the single-site molecular Hamiltonian given by

point for any value of the model parameters. The line of the _ _

superfluid transitions X line) is connected to the phase- hj=—K[Tr(t;p;) ]t;— IH{[ Tr(t; cosh,) ]t; cosé;

separation curve by a critical end point at a temperature dis- . .

tinctly lower than the phase-separation critical temperature. +[Tr(ti sin 6y Jt; sin 6} + At ©

Thus upon lowering the temperature the system first phase \ye define the following order parameters:

separates into two normal fluids with different concentrations

of He. At lower temperatures, there is phase separation into Q=1-x=(t;) (10

a superfluid phase with a lo’#He concentration and into a

normal fluid with a high®He concentration. and
In this paper we are interested in the corresponding three-

dimensional systems. We determine the phase diagram of the

VBEG model within mean-field approximation and by

Monte Carlo simulations.

M,=(tjcosb;), M,=(t;sing). 11

Q corresponds to the concentration ®e, x to the concen-
tration of He, andM, ,M, are the components of the two-
dimensional superfluid order parameddr=(M,M,) with

lll. MOLECULAR-FIELD APPROXIMATION M=W. Within this approximationQ(A,T) and

A. Free energy M(A,T) are given by two coupled self-consistent equations:
In this section we determine the phase diagram of the Lo SIM)
VBEG model within the molecular-field approximation. It is Q= _0 B _ (12)
derived from the variational method based upon approximat- ePKQTA) 1| ((BIM)
ing the total equilibrium density matrix by a product of local
site density matricep; [22]. and

The variation theorem for the free energy reads -
11(BIM)

AR Ly aTM)

F<F,=Tr(pH)+(1B)Tr(pInp), (5) M (13
whereF is the exact free energy arfg, is an approximate
free energy associated with the density matpx B

= 1/kgT. The minimum ofF-, with respect to the variation of
p subject to the constraint g 1 is attained for the equilib-

wherely(z) andl(z) are modified Bessel functiog4].
The equilibrium free energyp (A,T) is given by

! ; : - > K J
rium density matrix,p=e~ A"/ Tr(e™#™). (A, T)N= = [(Q(A,T)2+=[M(A,T) ]2+ (1/8)
Within mean-field theory the density matrix is approxi- 2 2
mated by XIn[1-Q(A,T)]. (14)
N
p=po= H pi (6) Most parts of the phase diagram can only be determined by
o solving the equations fo@ and M numerically. Some re-

gions, however, can be studied analytically.
where in homogeneous bulk systems the local density matrix

pi is independent of the site For the Hamiltonian given by B. A line and tricritical point

Eq. (1) the variational mean-field free energy per site is ] ) » ) )
In order to find the line of critical points on which second-

F % 3 order transitions from the normaM=0) to the the super-

D K J
%E N- E[Tr(tipi)]2—5{[Tr(ticosaipi)]2 fluid (M #0) state take place, one needs the thermodynamic
potential in terms of the order parameidyr
(7)
B N whereH is a field conjugate t/,

whereK=zK and J=zJ. To determine variational minima

to Eq. (7) we treat the local site densify; as a variational He IA (16)
function, and the best functional form in termstpaind 6; is M ”
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The conditions for the critical points are

dH  #°H o (93H>0 L
FURIVERRIVER 40
and the tricritical point is determined by
dH °H °H 4*H o 7°H P
M gM2 aME oMt T aMmS

To find H as a function oM we use the analog of E¢13)
for H#0,

B 1.(BIM+ BH)
PR L (FIM+ BH)

M (19

Since this equation cannot be inverted explicitly, we expan

it aroundH =0 keeping only terms linear iR, and find
_ 11(BIM)—MIo(BIM) + Mes-Ke+a)
M11(BIM) = (12)[1o(BIM) =1 ,(BIM)]

Applying the conditions formulated in Eq€l7)—(20) yields
the whole line of critical points, i.e., the line

BH (20

J(1-x 3Q
2 2

Ts(x)= (21

It follows that, as the concentration dHe increases from
zero, T, decreases linearly frorT4(0)=J/2. The critical

curve A=A((T) in the (A,T) plane can be obtained by first
solving Eq.(12) for A (here and in the following we include

kg into T), which gives

AQ,T)=TIN(1-Q)-TINQ+KQ+TInly(BIM),
(22

and then evaluate E(2) for M =0 andQ=2T/J [see Egs.
(10) and(21)].

The line of second-order phase transitions ends at the tri-
critical point (T,X,), where the transition changes to a first-

order one. From Eq€$18) and(20) one obtains for the tem-
peratureT,,

1+2K/J
T /T40)= 2T2K13 (23
and for the concentratiox ,
T /T40)=1—x, (24

providedd®H/dM®>0 holds for the chosen value &fJ. It

PHYSICAL REVIEW E69, 036117 (2004

C. Demixing

For the disordered phase witi =0 one can easily find
the first-order phase-separation line from thée-rich “nor-
mal” fluid to the *He-rich “normal” fluid. The phase sepa-
ration is associated with an instability loop including a range
of Q values for whichdA/9Q>0 and the critical point is
given bydA/9Q=9°Al9Q?=0. These last two relations to-
gether with Eq.(22), evaluated aM =0, are satisfied ifQ.

=1/2 andT.=K/4. The critical valueA, of A is K/2. In-
sertingA=A; andM =0 into Eq.(22) gives

TIn o

Q—(1/2)R(2Q—1)=0. (25)

For T<K/4 this equation has pairs of solutio®(1— Q).

For M=0, i.e., above the critical line in theQ,T) plane,
hese solution form the coexistence curve which is symmet-
ic aboutQ=1/2 orx=0.5. For temperatures lower than the
intersection temperaturg of the critical line with the curve
given by Eq.(25), the phase rich ifHe becomes superfluid
and Eq.(25) no longer represents the coexistence curve.

In order to find what types of phase diagrams the present
model provides we look for the phase-separation instability
on the critical curve as determined in Sec. Ill B and how it is
located with respect to the intersection poit=(Q,,T,).
Depending on the ratidk/J there are three possibilities
which give three different types of the phase diagrémthe
instability pointP; lies below the intersection poif, , (ii)

P, lies aboveP,, and(iii) the critical point of the transition
between®He- and *He-rich “normal” fluids falls into the
instability range initiated aP; .

A sufficient condition for an instability loop leading to

phase separation #\/9Q>0. Using Eq.(22) and the rela-

tion Q=M 1,(8IM)/1,(BIM), one finds

(%) —_—3+R+3 (26)
IQ) g_or+ 2(1—Q%) ’
whereas
(%) __—j_,_'R (27)
Q) g 2(1-Q*)

whereQ* is the critical value ofQ for superfluid ordering
given by Eq.(21). Thus (A/9Q)q=qx - >(dA/IQ)g-q* +
and the instability will occur on the ordered side of the criti-
cal curve when ¢A/9Q) -+ +=0. From Eq.(26) the co-
ordinates of the instability poinP; are given by Eq(23),
i.e., they are exactly the same as those of the tricritical point.
We find numerically that?, and P,=(Q;,T;) coincide for
K/J~2.016 81.

For K/J>2.016 81 caséi) is realized, i.e., the instability

is possible that not all critical points on this so-called critical point P; lies inside the coexistence curve between the
line represent equilibrium phase transitions because the lattéHe-rich normal fluid and the*He-rich normal fluid. We
ones are preempted by first-order demixing transitions. Thukave obtained numerically the phase diagramkéi=2.4.

it can be that only a portion of this so-called critical line It is shown in Figs. (& and 1b) in the (A,T) and ,T)

gives theh line, the rest being metastable.

planes, respectively. The solid line in th&,T) plane repre-
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FIG. 2. Same as Fig. 1, but fé&t/J=1.8. For this value oK/J
the N line ends at a tricritical poinA beyond which there is a
first-order phase transition between tfide-rich superfluidS and
the “He-rich normal fluid. At even lower temperatures there is a
triple point D. The coordinates of these points ake=[A/T4(0)
~1.704,T/T40)~0.821], C=[A/T40)=1.8, T/T4(0)=0.9], D

pnases wr o e T —[A/T0)=1.8, T/T(0)~0.793] and A=[T/T(0)~0.821,x
=0, x=1—0Q large, a *He-rich normal fluid 1 =0, x smal)), and 0179 C—[T/T,(0)=09.x=1/2], D—[T/T,(0)=0793.%,

4 ; . X
a “He-rich superfluidS (M #0, x Sm"".'?' In (3 the dashed line ~0.154,x,~0.216,x3~0.784]. In (b) there are two-phase coexist-
represents second-order phase transitions and correspondsxo the . S
T . . - L ._ence regions belovh and belowC which join for three-phase co-
line; full lines are the loci of first-order phase transitions. For this

value ofK/J there is no tricritical point. Tha line of second-order existence aD (dotted curve
phase transitions terminates at the phase-separation curve at the
critical end pointE. The two-phase region ifb) and the line of  mal fluid or the*He-rich superfluidrepresented by a dashed
first-o_rder phase tran_si.tions i(_a) end at a critical pointC. The |ing) s expected to exhibit a singular curvature|T
coordinates of the critical points a@=[A/T4(0)=2.4,T/T4(0) —Tg| ™« as T approaches the end point temperature from
=12, E=[A/T(0)=2.4T/T{(0)~0.89 and C=[T/T(0)  apove or below25]. « is the critical exponent describing the
=1.2,x=1/2] and E=[T/T (0)~0.89,x~0.107. In (b) the A gpecific heat singularity on the critical line below the pdint
Ir'gei; ?r']v(i? k?gt-\l/-vsé);)rgir?ég?sisx Eﬁitﬁg'fblgﬁkihfléwo'phase Since in mean-field theory=0, there is no nonanalyticity
9 y ' at the end point within the present approach. In tRery
sents the line of equilibrium second-order phase transitionglane[see Fig. 1b)] the coexistence curve is smooth Tt
on the critical curve and thus represents xhine. This line =T on the *He-rich side.
terminates at the phase-separation cydeashed lingat the For K/J<2.016 81 the instability poin®, lies outside the
critical end point E CE is the line of the first-order phase coexistence curve for théHe-rich normal fluid and the
transitions between théHe-rich and the*He-rich normal ~ “He-rich normal fluid. Therefore, & decreases below,
fluids with the critical pointC. At the pointE the curve CE  the phase separation between thée-rich normal fluid and
turns into the line of first-order phase transitions between théhe “He-rich superfluid commences at the poRy on the
3He-rich normal fluid and théHe-rich superfluid. The phase critical curve; henceP,=A is aftricritical point. The phase
boundaryA(T) between the*He-rich and the*He-rich nor-  diagram fork/J=1.8 is shown in Fig. 2. In theX, T) plane

FIG. 1. Phase diagram in th&(T) (a) and (x,T) (b) planes for
the model given by Eq(1) obtained within mean-field theory for
K/J=2.4. A andT are measured in units of the critical temperature
T4(0) of XY model on a simple cubfs.c) lattice ind=3 for J
=K. x (dimensionlessis the 3He concentration. There are three
phases which can be identified as®He-rich normal fluid M
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T T T point the critical lineT4(x) has the same slope as the phase-
*He-rich normal fluid . separation curve on théHe-rich side. The emergence of the
type of phase diagram shown in Fig. 3 from the one shown in
i Fig. 2 takes place at that value I§fJ for which there is an

s equilibrium between the phase at the critical pdhénd an
U AN ) ordered phase yielding/J~1.4298. ForK/J slightly less

o “He-rich \ than this valuek/J=1.4298, the tricritical point is located at
<

A T,~0.397 andx,~0.206. Within mean-field theory the
0.0 superfluid S v

\ 3He-rich side of the coexistence curve has a plateau for 0.8
\ =x=0.3, i.e., right below the tricritical point small changes
‘\ ] in temperature lead to pronounced changes in the concentra-
@ tion of *He. AsK/J is reduced further, the tricritical point

\ .

1] shifts to larger values of and smaller values of. Also the
shape of the coexistence curve changes; the plateau disap-
pears and the concentration #fle increases more uniformly
with the temperature.

AN T (%) \ A A phase diagram like that of Fig. 3 resembles qualitatively

| \
~ e the experimental ongl4], for which one finds for the tric-
0s | A 0.74 f’%\# ritical point To/T(0)=0.4 andx,=0.669. In our modek,

is, however, always smaller than 0.5.

IV. MONTE CARLO SIMULATIONS
two — phase ) ]
For the Monte Carlo treatment of the model Hamiltonian

given by Eq.(1) a “*He atom is represented by the normal-
ized spin vector

region

0.0 0.2 0.4 . 0.6 0.8 1.0 S =(cosd, ,sind,) (28)

FIG. 3. Same as Figs. 1 and 2, but fotJ=1. The\ line To(x)  for each lattice sit@in the spirit of the standardY model. A
and the first-order phase-separation line meet at the tricritical poinBHe atom on lattice sité is represented aS=(0,0). Con-
A. The *He-rich “normal” fluid phase is denoted bi. In (b)  sequently the occupation numberon lattice sitei is given
Monte Carlo data for the phase boundaries are indicated by plusqﬁ, t;=|S| and the interaction cog(- Gj) between two*He
which are connected by thin lines representing the Monte Carlgtgms is given by the computationally more favorable scalar
phase boundaries. The inset shows the results on an expanded SCB}%duct cos¢—6)=S-S;. The lattice is simple cubic with
near the tricritic_:al pointA. The coordinates of the tricritical point periodic boundajry Condlitions arid lattice sites in each di-
Vf'gh;n me;r;flelg /Tthce)oiyo ge éz[zA/ Tsfo)zo';76’tT/ T_st(O)I rection. The Monte Carlo algorithm is based on various stan-
=075 and A=[T/T4(0)=0.75,x=0.25]. In (b) the tricritica gard procedures which we discuss briefly in the following.
pointA, as obtalneq from Monte Carlo data, is also denoted by a do In order to explore the phase space of the model, two
and has the coordinatgS/T,(0)=0.744,x=0.26. types of updates are needgd): spin flip updates andii)
particle insertion and deletion updates. The spin flip updates
- 7 : " _ are responsible for the creation of long-ranged magnetic or-
normal fluid and the"He-rich superfluid which starts &  ger which in our model represents the normal-superfluid

terminates at a triple poird where it meets the first-order yansition. This can be of first or second order depending on
transition lines between théHe-rich normal fluid and the the concentratiorx=1—(t;) of SHe (t;=0) in the system

“He-rich normal fluid(curveCD) and between théHe-rich (see Fig. 3. The particle insertion and deletion updates are

normal fluid and the*He-rich superfluid. responsible for the demixing transitigphase separatiorin
For even smaller value of the ratiki/J there are no  oyr model. This transition can also be first or second order

Iong(_er tv_vo distinguishable disordered phas_e_s, |.e.,_the “”ﬂepending on the coupling constants in the mddek Figs.
DC in Fig. 2a) has shrunk to zero. The critical point for 1 and 2. In our simulation we are primarily interested in that
Soemstence between thél—_le-nch normal fluid and the yregime of coupling constants, for which the phase diagram

He-rich normal fluid, which occurs at.=1/2 andT.  resembles that of actudHe-*He mixtures(Fig. 3 and there-
=K/4, disappears. In Fig. 3 we present the phase diagrafore the possibility of a second-ordécritical) demixing
for K/J=1. In the A,T) plane it exhibits a very simple transition is not taken into account for the selection of the
form [Fig. 3(@]. The X line meets the first-order transition Monte Carlo moves. We therefore use the following methods
line between the’He-rich normal fluid and théHe-rich su-  in our Monte Carlo simulation(i) single particle insertion
perfluid at thetricritical point A. The lines meet with a com- and deletion andii) single spin flip according to the Me-
mon tangent, a feature characteristic of the mean-field apropolis algorithm[26], (iii) single cluster spin flip according
proximation. In the X, T) plane[Fig. 3b)] at the tricritical ~ to the Wolff algorithm[27], and (iv) overrelaxation updates

[Fig. 2(a)] the first-order transition line between tREle-rich
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of the spin degrees of freedom at constant configurationadmbedded the hybrid Monte Carlo method in a simulated
energy[28]. For each particle insertion or single spin flip tempering environmen{31]. According to the simulated
move the new spin state is randomly selected from the evetempering idea the temperature is treated as a random vari-
distribution on the unit circle. The projection vector for the able which performs a random walk inside a predefined tem-
embedding part of the Wolff algorithii27] is also chosen perature interval. In our simulation this temperature interval
randomly from the even distribution on the unit circle. is represented by a discrete set of temperatures, which are
The above update methods are performed in sweeps ovepaced closely enough to allow sufficient overlap of the cor-
the whole lattice, whereachspin flip sweedii), (iii ), or (iv) responding energy distribution functions. The required re-
is preceded by a Metropolis particle insertion and deletionweighting factord31] are estimated from short runs, one for
sweep(i). Cluster updates of the particle configuration ac-each pair of neighboring temperatures, and cheekpdste-
cording to the embedding algorithm of R¢R7] are disre- riori by monitoring the probability distribution of the
garded, because the critical demixing transition will not betemperatures—which should be essentially flat—during the
explored here. production run. Deviations of up to 20% from a flat tempera-
The three basic Monte Carlo updatég—(iv) outlined ture distribution are tolerated.
above are combined according to the hybrid Monte Carlo The Monte Carlo scheme described above is employed for
idea[29] to ensure efficient configuration space explorationlattice sized. between. =12 andL =60. For each choice of
also for second-ordefcritical) transitions to long-ranged parameters we have performed at least 12 blocks dhyo
magnetic order. One hybrid Monte Carlo step consists of temrid steps for equilibration followed by another18ybrid
individual steps, each of which can be one of the updatesteps to estimate the reweighting factors for each pair of
listed above. The Metropolis and the Wolff algorithm work neighboring temperatures and finally followed by 20* hy-
the standard way, in which the acceptance probaljliof a  brid steps for measurements. The measurement block is con-
proposed spin flip in the Metropolis algorithm is defined bytrolled by an outer loop in which a new temperature is pro-

the local heat bath rule posed according to the predetermined weight fac{8fg
after each hybrid Monte Carlo step. Apart from standard
pP(AE)=1[exp(AE/kgT)+1], (29)  thermodynamic quantities the distribution functions of the

total energy, the density, and the modulus of the magnetiza-

where AE is the change in configurational energy of the tion are monitored using histogram reweighting and extrapo-
proposed move. The overrelaxation part of the algorithm perlation technique$32] within the measurement block. Their
forms a microcanonical update of the configuration by sestatistical errors are estimated following standard procedures
quentially reflecting each spin in the lattice at the direction ofrésulting from the statistical independence of different mea-
the local field, i.e., the sum of the nearest-neighbor spinssurement blocks. Unless otherwise stated, all error bars
such that its contribution to the energy of the whole configu-quoted in the following correspond to one standard devia-
ration remains constant. The implementation of this updatéion. They are displayed only when they exceed the symbol
scheme is Straightforward, because according to(Ex_T[he sizes. The simulations have been performed on DEC Alpha
energy of a spin with respect to its neighborhood has thdVorkstations and Pentium Il PCs.

functional form of a scalar product. The form hybrid Monte

Carlo step depend_s_on the region of the phase-diagram t_o be V. MONTE CARLO RESULTS
explored. In the vicinity of the first-order phase separation
line typically six Metropolis M), one single cluster Wolff Our primary interest in this study is to use Eq) to

(C), and three overrelaxatiofO) updates are performed. model SHe*He mixtures in the tricritical region and we
The individual updates are mixed automatically in the pro-therefore restrict the numerical investigation of the statistical
gram to generate the update sequeMdd OM O MM O M  model described by Eq1) to the case]=K for which the
C for the magnetic degrees of freedom. phase diagram corresponding to this model Hamiltonian has
The random number generator is the shift register generdhe same topology as for the liquid phases’bie-*He mix-
tor R1279 defined by the recursion relatiog,=X,_,  tures. The tricritical point marks the onset of demixing into a
®X,—q for (p,q)=(1279,1063). Generators like these arespin (*He) rich fluid and a vacancy’fe) rich fluid, where
known to cause systematic errors in combination with thehe spin rich fluid simultaneously exhibits long-ranged mag-
Wolff algorithm [30]. However, for lags §,q) used here netic order of theXY type (superfluidity.
these errors are far smaller than typical statistical errors. The phase diagram is most conveniently investigated by
They are further reduced by the hybrid nature of the algothe inspection of distribution functior(bistogramg for vari-
rithm [29]. ous thermodynamic quantiti¢83]. However, the computa-
The hybrid algorithm is well suited to explore second-tional expense of the method described in R&8] in d
order phase transitions. However, it is unable to overcome=2 is prohibitive ind=3 for any appreciable system sizes.
the exponential slowing down of the algorithms included inWe therefore resort to a simpler, though less accurate, ap-
our hybrid scheme in the vicinity of a first-order transition, proach which allows us to treat larger systems and is accu-
e.g., the first-order magnetic.e., superfluigl transition for  rate enough for our purposes. In the following all tempera-
higher concentrations ofHe particles, i.e., for occupation tures are measured in units of the critical temperalu(@)
numbers; =0 in our model. In order to resolve this problem of the XY model on a simple cubic lattice ith=3, which is
while keeping the benefits of the hybrid scheme we havayiven byK . =J/[kgT(0)]=0.454 15(5)[34]. The chemical
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potential A is measured in units of the magnetic coupling 0.78
constant] [see Eq.(1)].
0.77
A. Order parameter distribution at tricriticality =
The key feature of théHe-*He phase diagram is the pres- £ 076
ence of a tricritical point. The task to locate the tricritical =
point for the model Hamiltonian given by E(l) is aided by
the observation thal= 3 is the upper critical dimension for 075
tricriticality. It is therefore reasonable to assume that the dis- —
tribution function of the magnetic order parameter essentially 0.74
takes the mean-fieldLanday form. We will give somea 0 0.02 0'041/L 006 008

posteriorievidence below that this assumption is indeed cor- o
rect, but an accurate numerical proof of it is beyond the FIG. 4. Pseudotricritical temperatufg(L)(X) vs 1L mea-
scope of this paper. sured in units of the critical temperatufg(0) of theXY model on
The magnetic order parameter, i.e., the magnetization & S-C- 1atice ind=3 for J=K [see Eq(1)]. L is in units of lattice
defined by ' ' constant. Error bars correspond to one standard deviation. The solid
line shows the fit of Eq(33) to the numerical data. The arrow
indicates the extrapolated valile (see main tejt The reduced?

M=(M,,M)=L3> S, (30)  of the fit is 0.15.
I
wheret;=0,1 characterizes the presencefe or “He at B _ =T (32)
lattice sitei and S =(cos#, ,siné) is the standard spin vari- A A=A

able of theXY model. In terms of the modulus=|M| of the

order parameter the distribution functi&{m) is assumed to jn the vicinity of the tricritical point, whereM is the coef-
take the form ficient matrix. From Eq.(32) and finite-size scaling argu-
ments one concludes that for sufficiently lalgeT,(L) — T,
and A((L)—A; are governed by a linear combination of
according to Landau theory in the ftricritical region Wherel'_dA andL "%, whered, a.nddB are thg scaling dimensions
the absence of symmetry-breaking fields is assurﬁed ThOf the parameters and_B n Eq. (31) given byd,=2 and

: 83= 1 apart from logarithmic correction85]. We therefore

arametersA, B, and C essentially play the role of the . X . )
Eandau-Ginzburg model parameteé)sieg Syec. VI beloyand arrive at the following functional form of (L) andA(L):

they depend on the temperatirend the chemical potential

A [see Eq(1)], whereC is manifestly positive, buA and B

may change sign. For system siZes 12, 18, 24, 36, 48,
and 60 simulations have been performed along various paths
in the (T,A) plane of the phase diagram and the data re-
corded forP(m) have been fitted according to E§1) using AfL)=A+ ﬁ+ ﬁ 33)
Py, A B, andC as fit parameters. For each system diza t L 2’

pseudotricritical poinf T,(L),A;(L)] has been identified by

the requiremenfA=B=0 within the corresponding statisti- \,nere the coefficients,, t,, &, and &, can be obtained

cal error. It turns out that Eq31) indeed captures the shape o the inverse matrixM ~ ! and the finite-size relations
of P(m) rather accurately over several orders of magnitude

for P in the pseudotricritical regimésee below. In particu-
lar, higher powers ofn compatible with the symmetry such
asm® can be safely ignored. Possible logarithmic corrections

to P(m) [35] could not be identified from the numerical data for A "_mdB evaluateq f_itT'A) :[Tt(L)'At(L)].for any sys-
unambiguously. We will comment on other logarithmic cor- tem sizel. The coefficientsa andb are nonuniversal metric

rections later. factors. Equation33) is used to fit the numerical data for
T.(L) andA(L) in order to obtain an estimate for the loca-
tion of the tricritical point. Logarithmic corrections as given
in Ref.[35] can be included in Eq33), but they are omitted
From the procedure outlined above we obtain a sequendeere because the quality of fit does not change substantially
of pseudotricritical point§ T;(L),A(L)] which can be ex- when they are included. The results are shown in Figs. 4 and
trapolated to the bulk limik — . In order to do this one has 5. The finite-size behavior of,(L) andA,(L) is accurately
to identify the functional form of the. dependence of the captured by Eq(33). Both the coefficients;, t, and &y, &
pseudotricritical point. Within our mean-field picture of the have the same sign and the second coefficient is substantially
tricritical behavior of our model the coefficienfsandB in  larger that the first one in both cases. Therefore both coeffi-
Eq. (31) are given by the linear combination cients must be kept in order to obtain an acceptable fit. The

P(m)=Pymexp — Am?—Bm*—Cm°) (31)

ty

Tt(L):Tt+ L

b
L2

A=al 2 and B=bL* (34)

B. The tricritical point
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FIG. 5. Pseudotricritical chemical potential(L) (X) vs 1L FIG. 6. Least square fit of E¢31) (solid line) to the simulation

measured in units of the coupling constanfsee Eq.(1)] for J data forP(m) for L=36 atT=T,(36) andA=A(36) (X) corre-
=K. Lis in units of lattice constant. Error bars correspond to onegponding toA=B=0. All data points except very few are con-

standard deviation. The solid line shows the fit of E8B) to the  pected by the fit function within their error bars. The redugdaf
numerical data. The arrow indicates the extrapolated vAlugsee  ihe fit is 0.71.P(m) andm are dimensionless.

main tex). The reduceg? of the fit is 0.42.

) _ ) The foundation of the above estimates is the quality of the
quality of fit can be measured in terms of the redugéd fits of Eq.(31) to the measured order parameter distribution
which is 0.15 in Fig. 4 and 0.42 in Fig. 5. We thus obtain thefynctions. We illustrate the quality of these fits in Fig. 6 for
extrapolated values L=36 at the corresponding pseudotricritical poifit

=T,(36) andA =A,(36). The shape of the distribution func-
Ti/Ts(0)=0.74384), A,/J=3.4362) (39 tonPis essentially captured by E@31) over more than
three orders of magnitude. The paramet&rand B vanish
ithin their statistical errors. The reduced of the fit is
.71. If A=B=0 is enforced, i.e, the fit is performed only
Qith the parameter®, and C, the reducedy? increases to
0.92. For all other system sizes investigated the situation is
t,/T{(0)=0.23+0.02, t,/T(0)=1.34*0.24, similar. We will return to _the finite si;e behavior &f(m)
after the discussion of finite-size scaling.

as our estimate for the location of the tricritical point, where
the statistical uncertainty affects the last digit by the amoun
given in parentheses. In these units the coefficients in E
(33) are given by

6;/3=-1.05+0.11, 6,/J=—8.5=1.4. (36) o _
C. Finite-size scaling
Another aspect of Eq33) is field mixing [33], because the A naive finite-size scaling ansatz for a thermodynamic
finite-size correctiond. "~ and L~ < are uniquely related t0  quantityX(A,B,L) near a tricritical point ird=3 is given by
the coefficientdscaling fields B andA in Eq. (31), respec-  [compare Eq(31)]
tively. In the vicinity of the tricritical point one therefore
obtains from Eqgs(32), (33), and(34) by a matrix inversion X(A,B,L)=L"%f(AL?BL), (40)

1 S, —L\[T-T
N tl52_t251 - 61 tl A_At
According to our mean-field picture of tricriticality id=3

the coexistence lind=A(T) in the vicinity of T=T, should
be associated with the linB=const=0 in the vicinity of
A=0. If we linearize the coexistence line near the tricritical
point according to X(aL™2,bL™ Y L)=L"%fy(a,b)=X,L ™%, (41

where fy(Xx,y) is the finite-size scaling function associated
. (387 with the quantityX anddy is its scaling dimension. Loga-
rithmic corrections have been disregarded for simplicity. For
the sequence of the pseudotricritical pointsT,X)
=[Ty«(L),A{(L)] one hasA=al 2 andB=bL ! [see Eq.
(34)]. In this case one therefore expedfsto display the
scaling behavior

B/b
Ala

A(T)=A+A[(T-Ty (3g)  Which can be conveniently checked numerically. However,
near tricritical points ird= 3 one has to consider logarithmic
we obtain from Eqgs(36) and (37) for the slopeA; at the ~ Corrections to the naive scaling and these have been exam-
tricritical point ined in Ref.[35]. We therefore only quote the results corre-
sponding to Eq(41) for the average magnetizatidm), the
Al =68,It,=(6.4+2.2)J/T40). (39)  specific heaC, and the magnetic susceptibility. One ob-
tains
Despite its large statistical error this result serves as a valu- S TIRE
able guideline for the further exploration of the phase dia- (m)=mo<|—) (Inl_> ,
gram. 0
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FIG. 7. Least square fit of E¢42) (solid line) to the simulation FIG. 9. Least square fit of E¢42) (solid line) to the simulation
data for(m) (dimensionless(x). A fit to pure mean-field behavior data for magnetic susceptibilit’ (). A fit to pure mean-field
is shown for comparisofdashed ling Data and fit are normalized behavior is shown for comparisdidashed ling Data and fit are
to the amplitudem, andl,=1.3+0.3. ForL=18 andL=60 the  normalized to the amplitud&, andl,=6.2+0.4. L is in units of
data points deviate from the fit cureolid line) by an amount lattice constant.
larger than the statistical errdr.is in units of lattice constant.
In particular, the attempt to fit pure mean-field behavior to
L\ 12 the data shown in Fig. 8 leads to a negative value for the
C:Cor( |n|—) . background specific heat which is inconsistent with thermo-
0 0 dynamics. The susceptibility shown in Fig. 9 appears to
2/ | \Va agree with the expectation for all system sizes whereas the
(In—) , (42 average magnetization shown in Fig. 7 displays a deviation
lo for L=60. The values of, obtained from the fits shown in
Figs. 8 and 9 are consistent;€6.3+0.5 and [,=6.2
+0.4, respectivelywheread ;= 1.3+ 0.3 obtained fron{m)
cording to Fig. 7 deviates strongly from the aforemen-

L

lo

X:XO

where the nonuniversal amplitudes,, C,, X, and the
length scald, are used as fit parameters. The correspondin
results are summarized in Figs. 7—9. The data are compatib .
with the finite-size scaling behavior given by E¢2) (solid tioned estimates fop. One of the reasons may be that)
lines). The logarithmic corrections turn out to be essential d€Pends rather weakly dnandl, as compared G and X.
Disregarding these leads to pure mean-field behavior whicfiherefore the estimation & from (m) is more susceptible

is not compatible with the datéalashed lines For the spe- O Statistical or systematic errors in the magnetization data.
cific heat displayed in Fig. 8 deviations from the expected! N€ large relative error of the actual estimage=1.30.3
behavior occur for larger system sizes=48 andL=60.  S€€mMS to |nd|cate this. Correqtlons to the leading a}symptotlc
These may be due to the proximity to the first-order demix-Pehavior given by Eq(42), which cannot be taken into ac-
ing transition, which is characterized by a finite latent heatcUnt on our current data basis, may therefore also play a
Including a finite background contribution to the specific ©!€:

heat as an additional fit parameter does not improve the fit, 1he scaling behavior of the order parameter distribution
function P(m) within the scope of Eq(31) is determined by

16 the finite-size behavior of the paramet@rin order to com-
pensate the finite-size effects induced(oy) we define the
effective coupling parameter

Cerr=C(m)°, (43

whereC is taken from the fit of Eq(31) to the distribution

function data along the sequence of the pseudotricritical

points A=B=0) and(m) is taken from the fit of Eq(42) to

o the magnetization data. The numerical result@Q; accord-

10 20 30 L 40 50 60 ing to Eq.(43) is displayed in Fig. 10 which shows a slow

but systematic decrease 6f;¢; with the system size. Ac-

FIG. 8. Least square fit of E¢42) (solid line) to the simulation ~ cording to the renormalization-group theory of tricritical be-

data for the specific hegt(x). A fit to pure mean-field behavior is havior C¢s should play the role of the coupling constant at

shown for comparisor(dashed ling Inclusion of a background tricriticality, which is a dangerous irrelevant variable dn

contribution toC as an additional fit parameter does not improve the= 3 [35]. We therefore expect the finite-size behayigs]

fit. Data and fit are normalized to the amplitudg and |;=6.3

+0.5. The deviations from the expected behaviolid line) for

larger systems may be due to the vicinity of the first-order demixing Cers(L)

transition.L is in units of lattice constant.

L -1
=|Cco+ cllnl—) (44)
0
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FIG. 10. Effective coupling paramet€l,; (dimensionlessac-
cording to Eq(43) (X) and a least square fit of EGi4) to the data
(solid line). The observed decrease Gf¢; is compatible with the
logarithmic behavior of a dangerous irrelevant variable at the upp
critical dimension. The reducegf of the fit is 0.16.L is in units of
lattice constant.

FIG. 11. Particle density distributioR(n) (dimensionlessfor
three temperatures along a straight path given by (B§). in the
eVicritical region as proposed by E¢35). The temperatures chosen
are T/T4(0)=0.7479 (X), T/T40)=0.7439 (+), and T/T4(0)
=0.7399(*). The parameters of Eq38) are T,/T4(0)=0.7439,
A{/J=3.438, andA{=5.00/T4(0). P andn are dimensionless.

for the effective coupling parameter, whelge=6.2 is taken ncertainties of the coefficients given by E@6) are too

from Fig. 9 andc, andc, serve as fit parameters to the data. |5rge for this purpose and their accurate evaluation is beyond
The solid line in Fig. 10 displays this fit withy=9.9=0.2 14 scope of this work.

andc;=1.6+0.1 and demonstrates that the expected behav- £ the vector BEG model the task of locating the first-

ior according to Eq(44) is consistent with the data. _order coexistence line is aided by the observation that the
Thg degree of agreement between the f|n|te—S|ze_ scallngpin rich fluid displays long-ranged XY tyfsuperfluid or-

behavior observed and expected may also be considered ggr yhen the demixing transition occurs. Apart from the par-

ana posterioriconfirmation that the sequence of the pseudos;cje density distributioisee Eq(45)] we therefore also ob-

tricritical points gives a reasonable estimate for the locationserye the distribution function of the magnetic energy density
of the tricritical point. However, some confirmation from a e, defined by

different source would still be desirable.

em=—JL 3>, tit;cog6,—6)). 46
D. Other distribution functions and the cumulant method m % H 0, ') (46)
In order to locate the first-order coexistence line one may-

inspect the distribution functioR(n) of the particle density or our choiceJ=K the demixing transition will also be

indicated by a double peak structure of the distribution func-
tion P(e,). Note that this will no longer be the case for

nEL*3Z ti. (45 sufficiently largeK>J, for which the demixing transition

' precedes the onset of long-ranged magnetic order. By moni-
toring both distribution functions along various paths in the

Near a first-order demixing transitioR(n) displays two (T,A) plane of the phase diagram and by applying the con-
peaks, one at a higher density corresponding to the spigtant weight ratio criterion to both we have redetermined the
(“He) rich liquid and one at a lower density corresponding toslope of the coexistence line in the vicinity of(A,) [see
the vacancy {He) rich liquid. At the tricritical point the two  Eq. (35)] and found
peaks coalesce and they separate increasingly as one follows
the two-phase coexistence line towards lower temperatures. A{=(5.0=0.1)J/T4(0). (47)
As a criterion to locate the coexistence line one may demand
that the ratio of the statistical weights of the two liquids, i.e.,Note that the new estimate given by Eg7) is consistent
the ratio of the areas under the respective peakB(of),  With the previous one given by Eq39). We furthermore
should not depend on temperature. However, this criterion igbserve that the two peaks indeed merge into a single but
only approximate, becausg priori it is not clear what the broader one very close to the estimate ®f,Q,) given by
value of the weight ratio should be. An accurate criterion carEd. (35). We illustrate this forP(n) in Fig. 11 for L=36
be obtained from the evaluation of the field mixiff] [see  along a straight path in the phase diagram according to Eq.
Eq. (37)]. From thermodynamic considerations one may de{38) for the choiceT;/Ts(0)=0.7439, A;/J=3.438, and
termine a linear combination of particle and energy densityA{ =5.01/T¢(0) [see Eq(47)] for three temperatures. In or-
such that the corresponding distribution function is symmetder to obtain a clear double peak structuré>(m) including
ric on the coexistence ling33]. The generally unknown the transition from and to a single peak along the chosen
value of the weight ratio then has to be unity at coexistencepath, a substantial amount of finetuning for b@thandA, is
In principle, one may determine the correct mixing ratio ofrequired even for moderate system sizes. It is therefore very
the densities from Eq$36) and(37). However, the statistical comforting that the values fof; and A, required to obtain
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0.40 data in the tricritical region. We therefore now turn to a de-
035 tailed derivation of the Ginzburg-Landau model in the tri-
critical region of the vector BEG model.
0.30
£ 025 VI. LANDAU-GINZBURG MODEL
0.20 FOR *He-"He MIXTURES
0.45 In this section we derive a two-parameter LG model de-
scribing bulk *He-*He mixtures near tricriticality. This deri-
A o G5 0ss vation follows the construction of th¢14 model for the stan-
T/T,00) dard critical phenomena from the Ising model.
FIG. 12. Cumulant ratidJ, (dimensionlessaccording to Eqg. o
(48) as a function of temperature along the straight path used in Fig. A. Derivation of the model
11 forL=12 (X), L=18 (+), L=24 (*), andL=36 ([J). Pairs Our starting point is the modified VBEG model for which

fJf symbols are_conrjgcted Iinea_rly to guide the eye. A unique crosspstead of continuum orientations of the spin vec®r
ing cannot be identifiedsee main text =(cos4,,sin@) we considerL discrete orientationss"

Fig. 11 are already within the error bars of the extrapolationzzqﬂ/l" '=1,... L, uniformly distributed over the unit

estimate of the tricritical point given by E¢35). The struc- (ﬂrcle (Y)V'th L‘)_’w' W'th each .or|entat|on S(

ture of P(e,) essentially looks the same so we do not repro-_.(cos.ei ,SinG;”) at the sitel we assouate_the density,

duce it here with discrete values 0 or 1. The total density 4fle at the
The location of the tricritical point along the coexistence S't€ 1 1S

line can be identified by a cumulant crossing of a suitably L

chosen densit}33]. As we have not evaluated the field mix- =Dt

. . tl tl,| . (49)

ing here we use the cumulants of the magnetic energy den- =1

sity defined by Eq(46) in order to investigate the cumulant

cross?ng along the strai_ght path used in Fig. 11. We defingg i, the vBEG model, we consider the close-packing case
the Binder cumulant ratio fo, by in which a®He atom at sité corresponds t6, =0 and a*He

4 atom tot;=1. Thus a lattice site is either occupied by a

1 M 49) 3He atom (;=0) or a “He atom associated with one of the
m H(em—(em))?)? L orientations {; ;=1 for |=1y,t; ;=0 otherwise, so that;
=E|":lti',= 1). The Hamiltonian of this effectively

The cumulanUSm as a function of temperature for different (L +1)-component mixture has the form
system sizes is shown in Fig. 12. A unique crossing cannot

&

be identified. However, the various crossings occur roughly L oL

where they are expected according to B2%). If the smallest H=— 2 32 2 ti,ltj,w%“) . SJ(")-q- Ktit; +A2 t,
systemL =12 is excluded, the crossings are located in the i | =lr=1 I
temperature interval 0.743T/T4(0)<0.747 which includes (50)

the estimate given by Ed35) near the lower bound. The
crossings for larger systems tend to occur at lower tempera- / ,
9 ger sy p eres". 51" =cos@—¢").

tures. One of the reasons that a unique crossing does n In the Landau-Ginzb del the effective Hamiltoni
occur is that bothe,,, andn contain corrections to the order h the Landau-inzburg modet the efiective Hamittonian,

parameter of the demixing transition which can only Ioedependlng on the local order-parameter fields, is obtained as

eliminated by a properly chosen linear combination of thesé. result of coartsef-gratl_nlngl procedurets.t.Thefprotchedure ;’.‘;.h'Ch
guantitieq 33]. A second reason is insufficient fine tuning for gives an exact tunctional representation for the partition

larger systems, which becomes visible in the nonmonotoni%ﬁndion for the corresponding microscopic Hamiltonian is
; ’ _ : e Hubbard-Stratonovitch transformation. The application
behavior ofUSm for L=36 at lower temperatures which

i i -~ ) of this method, however, is limited to microscopic Hamilto-
leads to a second intersection with, for L=24. Despite  pjans that can be expressed as a quadratic form. Here we use

the quantitative shortcomings of Fig. 12, the investigation ofanother approacf86].
the cumulant crossing in combination with the other evi-  Wwithin the standard mean-field treatment of the lattice gas
dence presented above provides some independent confirmaixture defined by the Hamiltonian in Eq(50), the
tion that our initial assertion about the shape of the tricriticalensemble-averaged occupangy=(t; ,) of the sitei is ob-
order parameter distribution function according to B1) is  tained by minimizing the grand canonical function
correct within the accuracy needed for the purpose of this
work.

Considerations in the spirit of Landau mean-field theory QMF(pA D=H(p; |)+2 D (51)
have played a major role in the analysis of our numerical . S
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at fixedT andA. The resulting minimum ofMF equals the

equilibrium grand potentiaf),. The ideal or noninteracting
free-energy density for aL(+1) component mixture on the
close-packed lattice il 9]

L
fia(pi ) =ksT (1—pi)ln(1—pi)+|§l piiInpi,
(52)

; L
with pi=Z2_p; .
In the following we shall treatp; and p;, as coarse-

grained order parameter fields and adopt the mean-field

grand canonical functiof™F form for the free energy of a
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particular local configuration of the order parameter. In the

spatially uniform and orientationally disordered phase the
equilibrium values ofp;, are constant and denoted by

(pi1)=QIL so that(p;)=Q. The actual values fluctuate
around these mean values:
pi=Q+ ¢, (53
Q o
pi=T T : +AP| = JrAPi,| , (54

which implies{¢;)=0 andX;Ap; ;=0 even without taking
the thermal average. The fluctuation of the dengijtyat the

sitei consists of an orientationally uniform papt /L related

to the fluctuationg; of the total “He density, which is the
same for all orientations, and a contrlbutlmp, | as an ex-
cess density ofHe in the orientatiors\" .

Assuming Ap;; and ¢; to be small we expand
QMF(p ,pi 1) in power series of the quctuatlon fieldsp; |
and ¢; about the equilibrium vaIueQ Flpi=0Q, pil
=Q/L). Since we aim for deriving an effectlve Hamiltonian
describing bulk®He-*He mixtures near tricriticality, in the
expansion we keep terms to the sixth orderAip; ; and to
guadratic order inp; . A standard Taylor expansion gives

6
QQIL)=2, O (.8pi).
(55

QM (pi ,pi) — Qg (

The contribution linear in the fluctuation field3}'" van-
ishes since we expard™* around its minimum. The other
terms are

QY (i, Apiy)

L L
-> [K¢i¢j+JlEl lE APiJApj,wS“)SJ('I)]
=1

(1)

keT

73|

+ )¢.+2 (Ap..) } (56)

1
Q(1-Q

QY (i ,Api0)
kel o < 112
-5 2 glf Bi(Ap)* 3 S (Bru) ]
(57)
T L
MF
Q) (d)i,Api,')—TZ 2 [3Q3¢(Ap.o
L 1L3
+§¢?(Api,|)2+g§(Apu)4},
(58)
- kT o w108
Qs (¢iaAPi,l)__Tzl ; 2Q4¢( pin*
+L—2¢(A )+1 L4(A )]
Q pi,l Q Pi, )
(59
T L
ngﬂFwi,Api,')—TEl 2 [5 o8 ildeu®

L, g, 1L° 6
+§¢i(APi,I) +1—5§(Api,|) .
(60)

The excess density in the orientati® is a periodic
function of | with period L. Therefore, it can be expanded
into a discrete Fourier series

L-1

APi,I:Z gl u; &' @K, (61)

where we have choser@)(2L) as a normalization constant.
The term corresponding to=0 is excluded from the expan-
sion due to the constraiﬁlleApH =0. SinceAp; , is a real
function, the Fourier componenits , andu; | _ are related
by ui’,=u; | _x. Now, we neglect higher modes in the Fou-
rier expansior{61) and approximate the excess density in the
orientations) by

a4y, | emi@mLly,

Apj =~ %(ui,le (62)

Usingu’,=u; | and expressing, ; in terms of its ampli-
tude|u;| and a phasg; we write Eq.(62) as

Api |~ %|ui|(ei(2ﬂ'/L)|+§i+e*i((277/L)|+§i))

Q Q
=r|ui|c0$(2w/L)l +§i]:r

3(|)'Ui,

(63
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whereu;=|u;|exp(&). . 2 5
The approximation(63) is a “coarse-graining” procedure % E 3(')~ui)6—>23J' do(sh. ui)6=1—Q|ui|6,
which reduces degrees of freedom. Tlhe 1 independent - TJo
guantities describing the orientational degrees of freedom are (70
replaced by a two-component vector field and
We define the effective Hamiltonian for the order param-
eter fields¢ andu as Q2 | " N
) 2 (s"-u) (s up s
Q%" u)=0""(p; pi ) - Q5" (Q.QIL). (64 T
Q2 2m ! ’ ’
Using Eq.(63) in Egs.(56—60 we obtain ano dai(l)fo dej(' )(S(l)'ui)(sfl )'uj)S“)'Sj(l )
Qeff Qeff+ Qeff 6 2
int (65 _ %ui.uj_ (71)

with
Finally, we assume that the fluctuating fieldsandu; vary

> L L slowly on the length scale of the lattice constanfThe con-

Q JE 2 (S“)'Ui) tinuum limit is obtained by considering— 0, considering
=1,1_ as a continuous variablg and ¢; andu; turning into ¢(r)

and u(r), respectively, while keeping the total volumé

Q5"(¢; ,ui)=—<iEj> |K¢>i¢j+

, , =a®N fixed. In this limit, one has
(/- >]
> ﬁaf?’f dr. (72)
kgT 1 i
- 2 [ ¢
2 Q1-Q) ™ For f being the smooth continuation to continuous arguments
L of a function defined on a lattice we use the following ap-
+% 2 (S(I)'Ui)z], (66) proximations @—0):
=1
d d d
af a2 o?f
E f(r+aeK)—>df(r)+aE et 2 5t
kT k=1 k=1 dri
Q?nfthT Z { ¢|L 2 (Sm U)2 (73
and
+¢I QLIE S(l) U)2+——2 (S(I) d d ﬁzf
> {f(r+ag)+f(r—ag)}—2df(r+a’>, —+ -,
1 1L k=1 k=1 org
T 1. 4 1 4 74
ShT 2 (8 u>+¢.QLE<$ ) (74)
. whereg k=1, ... d are the unit lattice vectors. Thus
1Q
D (8w J (67) 1 d
5L 1= .EJ> fif] Hia—?'f d3rk21 f(H{f(r+ag)+f(r—ag)}

We note that in the above expression terms containing sums 1

over all orientations of odd powers o§{’-u;) vanish. _>§a‘3j d3r{2df(r)—a?(V)2}. (75)
As the next step we take the lintit—o. This amounts to

replacing (1L)2{_, by (1/2m)[?™d6 and leads to the fol-  ag 4 result Eq(64) is replaced by

lowing relations] S’ = (cosé" ,sin6")1:

Q"=K[ Qg+ Qjn] (76)
L
9 z Sa)_ui)z_)gfzwdao)(s(l).ui)2:9|ui|2, with the Gaussian contributiof ¢, in which the fields¢
L= 2m)o 2 andu are uncoupled,

(68)
L Qezf dr[%a1¢2+%(V¢)2+%az|u|2+%C(VU)2],
Q
T AU BT T "

(69 and the interaction contribution, which coupl¢ésandu,
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Qi [ drraglul+asg?lul+blul+roglul?

+bypp?|ul*+elul®, (78
where we have chosen the length unit such #atl.

The coupling constants in the effective functional are
given explicitly by

_keT 1 .
MUK QI ” (79

ksT z J
azzig_g_, (80)

K 2 4 K

Q2 J
TR (81
1 kgT 3 kT 6
Tk TTnRKe (82
Q kgT Q kgT

b=k Tee K (83
1 kT 3 kT o
alZ_ETv 127760 K - (84

Equations (77), (78), and (79—(84) define the Landau-
Ginzburg model for®He-*He mixtures in terms of thermo-
dynamical quantities and two parameterandK, character-
izing the system.

B. \ line and tricritical point

In this subsection we determine thdine and a tricritical
point within mean-field theory for the LG model derived in
the preceding subsection. To this end we consider spatiall
uniform order parameter fields.

Mean-field theory amounts to approximating the thermo-

dynamic free energy by the minimum of the effective Hamil-
tonian which corresponds to the saddle point path contribu
tion to the partition function,

BFwe=min, , BQ T ¢,u]. (85)
The mean-field solution fop(r) is determined by
5Qeff
=0. 86
56(1) (89

For spatially uniform fields the above minimum condition
yields the following relation betwee# and|ul:

B(ag+2ay5ul?+2bggu|*) +rqul?+r,ul*=0. (87)

PHYSICAL REVIEW E 69, 036117 (2004

i riaiz
¢=—a—|u|2+2—2|u|4+0(|u|6). (88)
Inserting Eq.(88) into Egs.(77) and(78) we obtain
Qeff 1r2
I 2 -t 4 ’ 6
v 2a2|u| +|b 23, [ul*+e’|ul (89
with
2
r{ rqr
e —alz—;—£ e. (90
a; a

The conditiona,=0 yields the equation for the critical line
which is in agreement with Eq21). If a, is negativeg’ is
positive and there is a tricritical point determined by

—
=N

b— 0.

N -

a,=0, (92)

o))
fiey

The solution of these two equations coincides with the ex-
pressions given by Eq€23) and (24), i.e., the tricritical
point of this LG model is located at the same temperature
and concentration ofHe atoms as the tricritical point in the
VBEG model studied in Sec. lll within mean-field approxi-
mation.

VIl. SUMMARY AND DISCUSSION

By using molecular-field approximations and Monte
Carlo simulations we have investigated a three-dimensional
version of the generalized spin-1 Blume-Emery-Griffith
model[Eq. (1)] of *He-*He mixtures with a two-component
vector order parameter, mimicking the phase of the wave
function of *He atoms. This work is a first step to study the
Casimir force and other surface and finite-size effects in
§He—4He mixture films near their tricritical point. We have
Obtained the following main results.

(1) The topology of the phase diagram depends on the
ratio of the interaction parametelkdJ, whereK is related to
the “HeXHe interactiongEq. (2)] and J to the superfluid
density[Eq. (4)]. There are three different types of the phase
diagram, which are similar to those found in the BEG model
within the molecular-field approximation. For large values of
K/J, i.e., for K/J>2.01681, there exist three different
phases: &He-rich normal fluid, &He-rich normal fluid, and
a *He-rich superfluidsee Fig. 1 As the temperature is low-
ered, the mixed normal fluid phase separates into two normal
fluids differing by the concentratior of 3He. This phase
separation ends at a critical point. At lower temperature, the
phase separation is into a superfluid and a normal fluid. The
N\ line T4(x) of second-order phase transitions between a
“He-rich normal fluid and &He-rich superfluid terminates
at the “He-rich branch of the phase-separation curve at the

critical end point. This “critical end-point” type of the phase
Near a tricritical point both the field¢ and|u| are small. diagram was the only one found in previous studis,16]
Therefore it is sufficient to consider only a linear coupling of the two-dimensional version of the model. In three dimen-
between/u|? and ¢, neglecting the higher-order terms, sions we find two additional topologies of the phase diagram
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as the ratioK/J is decreased. For 1.4298/J<2.01681 retical expectations. The two-phase coexistence line in the
the phase diagram is the richdste Fig. 2 As in the pre- (T,A) plane of the phase diagram has been determined from
vious case, there are three different phases and a critical constant weight ratio criterion for energy and density his-
point of the phase-separation curve between two normal flutograms. The location of the tricritical point is also indicated
ids differing by the concentration ofHe. In addition, there by a crossing of the cumulant ratio of the magnetic portion of
is a tricritical point at the end of thk line beyond which a the energy density measured along the coexistencediere
first-order phase transition between “#de-rich superfluid Fig. 12. We conclude that mean-field theory provides a re-
and a*He-rich normal fluid takes place. There is also a tripleliable approach for studying the VBEG modeldr 3.
point at which three different phases coexist at different con- (3) Starting from the VBEG model and discretizing the
centrations. FoiK/J<1.4298 the phase diagram simplifies orientations of the spin vector we have derived the con-
(see Fig. 3. There is no longer 4He-rich normal fluid phase tinuum Landau-Ginzburg model fotHe-*He mixtures near
and a critical point. Thex line meets the first-order phase- the tricritical point encompassing the concentration figld
separation line betweefHe-rich superfluid and &He-rich  and a two-component vector field corresponding to the
normal fluid at the tricritical point. Tha line is given by  orientational order. In the effective Hamiltonian we consider
T(x)=2J(1—x)/2, wherez is the coordination number of the modulus ol up to its sixth power and the field up to
the lattice. The temperature of the tricritical point is quadratic terms, which is sufficient to study a tricritical
TA/T4(0)=(1+2K/J)/(2+2K/J) [Eg. (23)] and the con- point. The coupling constants appearing in this Landau-
centrationx, of He at this point is given by ,/T4(0)=1  Ginzburg theory are given explicitly in terms of thermody-
—Xa [Eq. (24)]. This type of the phase diagram is, except athamical quantities, the temperature, the mean concentration
the very low temperatures when the Fermi statisticde ~ of “He, and the two interaction parametdrandK charac-
plays the dominant role, similar to that observed experimenterizing the VBEG model. Mean-field theory for this LG
tally, although in our modek, is always smaller than 0.5 model yields the same equation for the critizaline as the
WhereastXp: 0.669. For a given topology of a phase dia- molecular-field approximation for the lattice VBEG model.
gram changing parameters of a model does not affect oufhe LG model provides a linear coupling betweef? and
main results. ¢ which yields the same coordinates of the tricritical point as
(2) The existence of the tricritical point is confirmed by the lattice VBEG model.
Monte Carlo simulations and in the unjt$,/T¢(0),A,/J] it
coincides with the mga_m—field_ prediction remarkably vyeII ACKNOWLEDGMENTS
(see Fig. 3 At the tricritical point the order parameter dis-
tribution function takes its mean-field form, where the pres- A.M. is grateful for the hospitality accorded by the Max-
ence of logarithmic corrections could not be excluded withinPlanck-Institut fu Metallforschung in Stuttgart, Germany.
the accuracy of the existing data. On the other, hand finiteShe appreciates fruitful discussions with Alina Ciach. This
size scaling of several thermodynamic quantities reveals theork was partially funded by KBN Grant No. 4 TO9A 066
presence of logarithmic corrections in accordance with theo22.
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