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Phase diagram of a model for3He-4He mixtures in three dimensions
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A lattice model of3He-4He mixtures which takes into account the continuous rotational symmetry O~2! of
the superfluid degrees of freedom of4He is studied in the molecular-field approximation and by Monte Carlo
simulations in three dimensions. In contrast to its two-dimensional version, for reasonable values of the
interaction parameters the resulting phase diagram resembles that observed experimentally for3He-4He mix-
tures, for which phase separation occurs as a consequence of the superfluid transition. The corresponding
continuum Ginzburg-Landau model with two order parameters describing3He-4He mixtures near tricriticality
is derived from the considered lattice model. All coupling constants appearing in the continuum model are
explicitly expressed in terms of the mean concentration of4He, the temperature, and the microscopic interac-
tion parameters characterizing the lattice system.
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I. INTRODUCTION

Spatial confinements of systems undergoing continu
phase transitions perturb the fluctuation spectrum of the
responding ordering degrees of freedom. This leads to a
pendence of the free energy of the systems on the dist
between the confining walls which can be expressed in te
of universal scaling function. Their gradient renders the
called critical Casimir forces which are the analogs of
well known electromagnetic Casimir or dispersion forces

Recent developments in the theory of Casimir forces
critical and correlated fluids@1# have provided a strong mo
tivation for testing them experimentally in various system
Capacity studies of4He wetting films near the superflui
transitionTl @2# have confirmed the existence of the critic
Casimir effect and for temperaturesT.Tl quantitative
agreement with corresponding theoretical predictions
been found@3–5#. Similar effects have been observed f
wetting films of binary liquid mixtures near the critical en
point of their demixing transition@6#. Additional evidence
for the critical Casimir force and detailed data have be
reported for wetting films at solid substrates of3He-4He
mixtures near their tricritical point@7,8#. These latter experi-
ments have also raised new interesting challenges for
theory, which have motivated the present work. Among th
is the sign and the amplitude of the Casimir force or, m
generally, the form of its scaling function for different valu
of the concentration of3He atoms. Theory predicts that the
features of the Casimir force crucially depend on the type
boundary conditions which the confining surfaces impose
the order parameter@1#. For example, the force should b
attractive for symmetric boundary conditions and repuls
for nonsymmetric boundary conditions. The distinction b
tween the surface universality classes is also relevant. In
case of pure4He films near thel point the boundary condi
tions at the two confining interfaces of the wetting lay
seem to be very well approximated by symmetric Dirich
boundary conditions forming the so-called ordinary surfa
universality class, because the quantum-mechanical w
1063-651X/2004/69~3!/036117~17!/$22.50 69 0361
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function that describes the superfluid state vanishes at
interfaces@1,2#. For films of 3He-4He mixture the situation is
less clear. In these systems a4He-rich layer forms near the
substrate-fluid interface, which may become superfluid
ready above thel line @9–11#, whereas there is an enrich
ment of 3He near the opposing fluid-vapor interface. Th
the two interfaces impose a nontrivial concentration profi
which in turn couples to the superfluid order parameter. T
experiment of Ref.@7# reports a repulsive Casimir force a
the tricritical point, but it is not immediately obvious that th
concentration profile induces effectively nonsymmet
boundary conditions for the superfluid order parameter,
symmetry-breaking boundary conditions at the substra
fluid interface~also known as the so-called extraordinary
normal universality class! and Dirichlet boundary conditions
at the fluid-vapor interface. The superfluid order parame
possesses a continuous O~2! symmetry so that if the layer is
effectively two dimensional it is in the Kosterlitz-Thoules
phase with the superfluid order parameter equal to zero@12#.
On the other hand, upon approaching thel line from the
high-temperature side the superfluid layer thickens due to
increase of the correlation length and a dimensional cro
over to a three-dimensional superfluid phase with nonz
order parameter should take place@13#. In order to be able to
interpret and to understand the features of the Casimir fo
and other surface and finite-size effects in3He-4He mixture
films near the tricritical point systematic studies of a mod
system are needed. Due to the universal character of
critical Casimir force it is sufficient to choose as a mod
system one which belongs to the same universality clas
the actual physical system. The prerequisite of such fut
studies is a detailed analysis of the bulk properties of suc
suitable model. This is the purpose of the present paper.
model should resemble the main features of the bulk ph
diagram of 3He-4He mixtures in three dimensions (d53)
and take into account the continuous rotational O~2! symme-
try of the superfluid degrees of freedom of4He.

The general features of phase separation and superflu
in three-dimensional mixtures of liquid3He and 4He are
©2004 The American Physical Society17-1
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well known from experiments@14#. In pure 4He there is a
transition from a normal fluid to a superfluid phase char
terized by a complex order parameter. If4He is diluted with
3He, the superfluid transition temperature is depressed
multaneously, the tendency toward phase separation
creases and at a critical3He concentration the mixture un
dergoes a first-order phase transition into a4He-rich and a
3He-rich phase, of which only the4He-rich phase is super
fluid. In the temperature-3He concentration plane (T,x) the
line of second-order superfluid transitionsTs(x) meets the
boundary of the two-phase coexistence region at the tric
cal point (Tt'87 mK,xt'0.67); x5N3 /(N31N4), where
Ni , i 53, 4, denotes the number of atoms of3He or 4He,
respectively.

In this paper we consider a simple lattice model known
the literature as the vectoralized Blume-Eme
Griffiths~VBEG! model @15,16#. It is defined in Sec. II. The
bulk phase diagram of the VBEG model was investiga
only in spatial dimensionsd52 by means of Migdal-
Kadanoff recursion relations@15,16#; no tricritical point was
found for any value of the model parameters. Here we st
the three-dimensional version of this model within t
molecular-field approximation and by Monte Carlo simu
tions, and we demonstrate that for reasonable values o
teraction parameters the resulting phase diagram resem
topologically that observed experimentally for thre
dimensional mixtures, for which the phase separation
pears as a consequence of the superfluid ordering. Th
carried out in Sec. III and Sec. IV, respectively. In Sec. VI w
derive a two-parameter continuous Landau-Ginzburg~LG!
model describing bulk3He-4He mixtures near a tricritica
point starting from the modified VBEG model. The LG a
proach has many advantages and it is worthwhile to hav
LG model with coupling constants explicitly related to th
measured quantities, such as temperature, superfluid de
concentration of3He atoms, or parameters describing int
actions. We close our paper with a summary and conclusi

II. THE MODEL

We consider a simple lattice model of3He-4He mixtures
which takes into account the continuous rotational O~2! sym-
metry of the superfluid degrees of freedom of4He. It is a
vectorial generalization of the spin-1 model used by Blum
Emery, and Griffiths~BEG! @17# for describing thel line
and the tricritical point in3He-4He mixtures. This descrip
tion does not aim at a quantitatively faithful modeling of t
actual experimental phase diagram@14#. Instead we strive for
capturing its essential physical and topological features,
the phase segregation in conjunction with the formation o
superfluid phase.Inter alia, this means that the model de
scribed in the following does not capture the finite miscib
ity of 3He in 4He of about 6% at very low temperature
where the3He in solution behaves as a Fermi liquid and th
would require a fully quantum-mechanical treatment@18#.
This latter aspect has, however, no important physical im
cations for the phase behavior near the elevated tricrit
temperature which is the focus of the present paper.

In this model each simple cubic lattice sitei is associated
03611
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with an occupation variablet i , taking the values 0 or 1, an
a phaseu i (0<u i,2p) which mimics the phase of the4He
wave function. A3He atom at sitei corresponds tot i50 and
a 4He atom tot i51. Since the model in this reduced versio
does not allow for unoccupied sites, the model does not
hibit a vapor phase.~In future studies the model can be ge
eralized to incorporate the vapor phase; here it is left out
reasons of simplicity.! u i reflects the superfluid degrees
freedom. The model Hamiltonian consists of a lattice g
part describing a binary mixture and a term responsible
the ‘‘superfluid’’ ordering. Since only4He atoms couple to
the superfluid order parameter the Hamiltonian is taken a

H52J(̂
i j &

t i t jcos~u i2u j !2K(̂
i j &

t i t j1D(
i

t i , ~1!

where the first two sums are over nearest-neighbor p
^ i j &, and the last sum is over all lattice sites. The latt
constanta is taken to be equal to 1.

In the lattice gas model of the3He-4He binary mixture the
coupling constantK and the fieldD are related to the effec
tive aHe-bHe interactions2Kab @19#,

K5K331K4422K34, ~2!

and to the chemical potentialsm3 andm4 of 3He and 4He,
respectively,

D5m32m412z~K332K34!, ~3!

where z is the coordination number of the lattice (z52d,
whered is the spatial dimension of the system;z56 in the
present case!.

In the liquid the effective interactionsKab are different
for different a and b due to the differences of mass an
statistics between3He and 4He atoms. The coupling con
stantJ is related@16,22# to a bare, superfluid densityr0(T)
by

J5\2r0~T!a(d22)/m2, ~4!

wherem is the mass of a4He atom.a is the mean interpar-
ticle spacing~the lattice parameter in the lattice model!. The
superfluid density can be measured from the velocity of th
sound and from the response of a torsional oscillator@20#; it
has units of mass per unit volume~or area in two dimen-
sions!. Here we are concerned only with the caseJ.0 and
K.0.

When all occupation numberst i are equal to 1, up to
constants the first term in Eq.~1! corresponds to the classica
XY model ~the planar rotator model! for pure 4He. There-
fore, in the limit of D→2` the partition function of the
model reduces to that ofXY model up to a factoreKzN where
N is the number of lattice sites.

The model as defined above is known in the literature
the VBEG model. It was first proposed by Berker and Nels
@16# and, independently, by Cardy and Scalpino@15# to de-
scribe thinfilms of 3He-4He mixtures, for which the mecha
nism of the superfluid transition is different from that ind
53; there is no spontaneous breaking of the continu
7-2
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symmetry ind52 @21#, i.e., the order parameter does n
become nonzero below the transition temperature. The su
fluid transition in films of 3He-4He mixtures is of the
Kosterlitz-Thouless type@12#.

In d52 the phase diagram of the VBEG model was o
tained by means of the Migdal-Kadanoff renormalizatio
group method@15,16#. Its features are qualitatively similar t
those observed experimentally for the corresponding th
dimensional mixtures, except that there is no true tricriti
point for any value of the model parameters. The line of
superfluid transitions (l line! is connected to the phase
separation curve by a critical end point at a temperature
tinctly lower than the phase-separation critical temperatu
Thus upon lowering the temperature the system first ph
separates into two normal fluids with different concentratio
of 3He. At lower temperatures, there is phase separation
a superfluid phase with a low3He concentration and into
normal fluid with a high3He concentration.

In this paper we are interested in the corresponding th
dimensional systems. We determine the phase diagram o
VBEG model within mean-field approximation and b
Monte Carlo simulations.

III. MOLECULAR-FIELD APPROXIMATION

A. Free energy

In this section we determine the phase diagram of
VBEG model within the molecular-field approximation. It
derived from the variational method based upon approxim
ing the total equilibrium density matrix by a product of loc
site density matricesr i @22#.

The variation theorem for the free energy reads

F<Fr5Tr~rH!1~1/b!Tr~r ln r!, ~5!

whereF is the exact free energy andFr is an approximate
free energy associated with the density matrixr; b
51/kBT. The minimum ofFr with respect to the variation o
r subject to the constraint Trr51 is attained for the equilib-
rium density matrix,r5e2bH/Tr(e2bH).

Within mean-field theory the density matrix is approx
mated by

r5r05)
i 51

N

r i , ~6!

where in homogeneous bulk systems the local density ma
r i is independent of the sitei. For the Hamiltonian given by
Eq. ~1! the variational mean-field free energy per site is

Fr0

N
[

F

N
52

K̃

2
@Tr~ t ir i !#

22
J̃

2
$@Tr~ t icosu ir i !#

2

1@Tr~ t isinu ir i !#
2%1DTr~ t ir i !1~1/b!Tr~r i ln r i !,

~7!

where K̃5zK and J̃5zJ. To determine variational minima
to Eq. ~7! we treat the local site densityr i as a variational
function, and the best functional form in terms oft i andu i is
03611
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obtain by minimizingFr0
with respect tor i . In this proce-

dure, however, the connection betweenFr0
and the Hem-

holtz free energy functional of the order parameters is
straightforward @23#. Minimizing F/N1hTr(r i) with re-
spect tor i and withh as a Lagrange multiplier, one obtain

r i5e2bhi/Tr~e2bhi !, ~8!

wherehi is the single-site molecular Hamiltonian given by

hi52K̃@Tr~ t ir i !#t i2 J̃$@Tr~ t i cosu i !#t i cosu i

1@Tr~ t i sinu i !#t i sinu i%1Dt i . ~9!

We define the following order parameters:

Q[12x5^t i& ~10!

and

Mx5^t i cosu i&, M y5^t i sinu i&. ~11!

Q corresponds to the concentration of4He, x to the concen-
tration of 3He, andMx ,M y are the components of the two
dimensional superfluid order parameterM5(M1 ,M2) with
M5AMx

21M y
2. Within this approximationQ(D,T) and

M (D,T) are given by two coupled self-consistent equatio

Q5
I 0~b J̃M !

eb(2K̃Q1D)1I 0~b J̃M !
~12!

and

M5
I 1~b J̃M !

eb(2K̃Q1D)1I 0~b J̃M !
, ~13!

whereI 0(z) and I 1(z) are modified Bessel functions@24#.
The equilibrium free energyF(D,T) is given by

F~D,T!/N5
K̃

2
[ ~Q~D,T!#21

J̃

2
@M ~D,T!#21~1/b!

3 ln@12Q~D,T!#. ~14!

Most parts of the phase diagram can only be determined
solving the equations forQ and M numerically. Some re-
gions, however, can be studied analytically.

B. l line and tricritical point

In order to find the line of critical points on which secon
order transitions from the normal (M50) to the the super-
fluid (MÞ0) state take place, one needs the thermodyna
potential in terms of the order parameterM,

A~M ,D,T!5F2MH, ~15!

whereH is a field conjugate toM,

H52
]A

]M
. ~16!
7-3
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The conditions for the critical points are

]H

]M
5

]2H

]M2
50,

]3H

]M3
.0, ~17!

and the tricritical point is determined by

]H

]M
5

]2H

]M2
5

]3H

]M3
5

]4H

]M4
50,

]5H

]M5
.0. ~18!

To find H as a function ofM we use the analog of Eq.~13!
for HÞ0,

M5
I 1~b J̃M1bH !

eb(2K̃Q1D)1I 0~b J̃M1bH !
. ~19!

Since this equation cannot be inverted explicitly, we expa
it aroundH50 keeping only terms linear inH, and find

bH5
I 1~b J̃M !2MI 0~b J̃M !1Meb(2K̃Q1D)

MI 1~b J̃M !2~1/2!@ I 0~b J̃M !2I 2~b J̃M !#
. ~20!

Applying the conditions formulated in Eqs.~17!–~20! yields
the whole line of critical points, i.e., thel line

Ts~x!5
J̃~12x!

2
5

J̃Q

2
. ~21!

It follows that, as the concentration of3He increases from
zero, Ts decreases linearly fromTs(0)5 J̃/2. The critical
curveD5Ds(T) in the (D,T) plane can be obtained by firs
solving Eq.~12! for D ~here and in the following we include
kB into T), which gives

D~Q,T!5Tln~12Q!2Tln Q1K̃Q1Tln I 0~b J̃M !,
~22!

and then evaluate Eq.~22! for M50 andQ52T/ J̃ @see Eqs.
~10! and ~21!#.

The line of second-order phase transitions ends at the
critical point (Tt ,xt), where the transition changes to a firs
order one. From Eqs.~18! and~20! one obtains for the tem
peratureTt ,

Tt /Ts~0!5
112K/J

212K/J
~23!

and for the concentrationxt ,

Tt /Ts~0!512xt , ~24!

provided]5H/]M5.0 holds for the chosen value ofK/J. It
is possible that not all critical points on this so-called critic
line represent equilibrium phase transitions because the l
ones are preempted by first-order demixing transitions. T
it can be that only a portion of this so-called critical lin
gives thel line, the rest being metastable.
03611
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C. Demixing

For the disordered phase withM50 one can easily find
the first-order phase-separation line from the3He-rich ‘‘nor-
mal’’ fluid to the 4He-rich ‘‘normal’’ fluid. The phase sepa
ration is associated with an instability loop including a ran
of Q values for which]D/]Q.0 and the critical point is
given by]D/]Q5]2D/]Q250. These last two relations to
gether with Eq.~22!, evaluated atM50, are satisfied ifQc

51/2 andTc5K̃/4. The critical valueDc of D is K̃/2. In-
sertingD5Dc andM50 into Eq.~22! gives

Tln
12Q

Q
2~1/2!K̃~2Q21!50. ~25!

For T,K̃/4 this equation has pairs of solution (Q,12Q).
For M50, i.e., above the critical line in the (Q,T) plane,
these solution form the coexistence curve which is symm
ric aboutQ51/2 orx50.5. For temperatures lower than th
intersection temperatureTI of the critical line with the curve
given by Eq.~25!, the phase rich in4He becomes superfluid
and Eq.~25! no longer represents the coexistence curve.

In order to find what types of phase diagrams the pres
model provides we look for the phase-separation instab
on the critical curve as determined in Sec. III B and how it
located with respect to the intersection pointPI5(QI ,TI).
Depending on the ratioK/J there are three possibilitie
which give three different types of the phase diagram:~i! the
instability point Pt lies below the intersection pointPI , ~ii !
Pt lies abovePI , and~iii ! the critical point of the transition
between 3He- and 4He-rich ‘‘normal’’ fluids falls into the
instability range initiated atPt .

A sufficient condition for an instability loop leading t
phase separation is]D/]Q.0. Using Eq.~22! and the rela-
tion Q5MI 0(b J̃M )/I 1(b J̃M ), one finds

S ]D

]QD
Q5Q* 1

5
2 J̃

2~12Q* !
1K̃1 J̃, ~26!

whereas

S ]D

]QD
Q5Q* 2

5
2 J̃

2~12Q* !
1K̃, ~27!

whereQ* is the critical value ofQ for superfluid ordering
given by Eq.~21!. Thus (]D/]Q)Q5Q* 2.(]D/]Q)Q5Q* 1

and the instability will occur on the ordered side of the cri
cal curve when (]D/]Q)Q5Q* 150. From Eq.~26! the co-
ordinates of the instability pointPt are given by Eq.~23!,
i.e., they are exactly the same as those of the tricritical po
We find numerically thatPI and Pt5(Qt ,Tt) coincide for
K/J'2.016 81.

For K/J.2.016 81 case~i! is realized, i.e., the instability
point Pt lies inside the coexistence curve between
3He-rich normal fluid and the4He-rich normal fluid. We
have obtained numerically the phase diagram forK/J52.4.
It is shown in Figs. 1~a! and 1~b! in the (D,T) and (x,T)
planes, respectively. The solid line in the (D,T) plane repre-
7-4
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sents the line of equilibrium second-order phase transiti
on the critical curve and thus represents thel line. This line
terminates at the phase-separation curve~dashed line! at the
critical end point E. CE is the line of the first-order phas
transitions between the3He-rich and the4He-rich normal
fluids with the critical pointC. At the pointE the curve CE
turns into the line of first-order phase transitions between
3He-rich normal fluid and the4He-rich superfluid. The phas
boundaryD(T) between the3He-rich and the4He-rich nor-

FIG. 1. Phase diagram in the (D,T) ~a! and (x,T) ~b! planes for
the model given by Eq.~1! obtained within mean-field theory fo
K/J52.4. D andT are measured in units of the critical temperatu
Ts(0) of XY model on a simple cubic~s.c.! lattice in d53 for J
5K. x ~dimensionless! is the 3He concentration. There are thre
phases which can be identified as a3He-rich normal fluid (M
50, x512Q large!, a 4He-rich normal fluid (M50, x small!, and
a 4He-rich superfluidS (MÞ0, x small!. In ~a! the dashed line
represents second-order phase transitions and corresponds tol
line; full lines are the loci of first-order phase transitions. For t
value ofK/J there is no tricritical point. Thel line of second-order
phase transitions terminates at the phase-separation curve a
critical end pointE. The two-phase region in~b! and the line of
first-order phase transitions in~a! end at a critical pointC. The
coordinates of the critical points areC5@D/Ts(0)52.4,T/Ts(0)
51.2#, E5@D/Ts(0)52.4,T/Ts(0)'0.89# and C5@T/Ts(0)
51.2, x51/2# and E5@T/Ts(0)'0.89,x'0.107#. In ~b! the l
line is given byTs(x)/Ts(0)512x @see Eq.~21!#. The two-phase
region in ~b! betweenC andE is symmetric aboutx51/2.
03611
s

e

mal fluid or the4He-rich superfluid~represented by a dashe
line! is expected to exhibit a singular curvature;uT
2TEu2a as T approaches the end point temperature fro
above or below@25#. a is the critical exponent describing th
specific heat singularity on the critical line below the pointE.
Since in mean-field theorya50, there is no nonanalyticity
at the end point within the present approach. In the (x,T)
plane @see Fig. 1~b!# the coexistence curve is smooth atT
5TE on the 3He-rich side.

For K/J,2.016 81 the instability pointPt lies outside the
coexistence curve for the3He-rich normal fluid and the
4He-rich normal fluid. Therefore, asT decreases belowTt ,
the phase separation between the3He-rich normal fluid and
the 4He-rich superfluid commences at the pointPt on the
critical curve; hencePt[A is a tricritical point. The phase
diagram forK/J51.8 is shown in Fig. 2. In the (D,T) plane

e

the

FIG. 2. Same as Fig. 1, but forK/J51.8. For this value ofK/J
the l line ends at a tricritical pointA beyond which there is a
first-order phase transition between the4He-rich superfluidS and
the 4He-rich normal fluid. At even lower temperatures there is
triple point D. The coordinates of these points areA5@D/Ts(0)
'1.704, T/Ts(0)'0.821], C5@D/Ts(0)51.8, T/Ts(0)50.9], D
5@D/Ts(0)51.8, T/Ts(0)'0.793] and A5@T/Ts(0)'0.821,x
'0.179#, C5@T/Ts(0)50.9, x51/2#, D5@T/Ts(0)50.793,x1

'0.154,x2'0.216,x3'0.784#. In ~b! there are two-phase coexis
ence regions belowA and belowC which join for three-phase co
existence atD ~dotted curve!.
7-5
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@Fig. 2~a!# the first-order transition line between the3He-rich
normal fluid and the4He-rich superfluid which starts atA
terminates at a triple pointD where it meets the first-orde
transition lines between the3He-rich normal fluid and the
4He-rich normal fluid~curveCD) and between the3He-rich
normal fluid and the4He-rich superfluid.

For even smaller value of the ratioK/J there are no
longer two distinguishable disordered phases, i.e., the
DC in Fig. 2~a! has shrunk to zero. The critical point fo
coexistence between the3He-rich normal fluid and the
4He-rich normal fluid, which occurs atxc51/2 and Tc

5K̃/4, disappears. In Fig. 3 we present the phase diag
for K/J51. In the (D,T) plane it exhibits a very simple
form @Fig. 3~a!#. The l line meets the first-order transitio
line between the3He-rich normal fluid and the4He-rich su-
perfluid at thetricritical point A. The lines meet with a com
mon tangent, a feature characteristic of the mean-field
proximation. In the (x,T) plane@Fig. 3~b!# at the tricritical

FIG. 3. Same as Figs. 1 and 2, but forK/J51. Thel line Ts(x)
and the first-order phase-separation line meet at the tricritical p
A. The 3He-rich ‘‘normal’’ fluid phase is denoted byN. In ~b!
Monte Carlo data for the phase boundaries are indicated by pl
which are connected by thin lines representing the Monte C
phase boundaries. The inset shows the results on an expanded
near the tricritical pointA. The coordinates of the tricritical poin
within mean-field theory are A5@D/Ts(0)'0.776,T/Ts(0)
50.75# and A5@T/Ts(0)50.75,x50.25#. In ~b! the tricritical
point A, as obtained from Monte Carlo data, is also denoted by a
and has the coordinates@T/Ts(0)50.744,x50.26#.
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point the critical lineTs(x) has the same slope as the pha
separation curve on the3He-rich side. The emergence of th
type of phase diagram shown in Fig. 3 from the one shown
Fig. 2 takes place at that value ofK/J for which there is an
equilibrium between the phase at the critical pointC and an
ordered phase yieldingK/J'1.4298. ForK/J slightly less
than this valueK/J51.4298, the tricritical point is located a
Tt'0.397 and xt'0.206. Within mean-field theory the
3He-rich side of the coexistence curve has a plateau for
&x&0.3, i.e., right below the tricritical point small change
in temperature lead to pronounced changes in the conce
tion of 3He. As K/J is reduced further, the tricritical poin
shifts to larger values ofx and smaller values ofT. Also the
shape of the coexistence curve changes; the plateau d
pears and the concentration of3He increases more uniformly
with the temperature.

A phase diagram like that of Fig. 3 resembles qualitativ
the experimental one@14#, for which one finds for the tric-
ritical point TA /Ts(0)50.4 andxA50.669. In our modelxA
is, however, always smaller than 0.5.

IV. MONTE CARLO SIMULATIONS

For the Monte Carlo treatment of the model Hamiltoni
given by Eq.~1! a 4He atom is represented by the norma
ized spin vector

Si[~cosu i ,sinu i ! ~28!

for each lattice sitei in the spirit of the standardXYmodel. A
3He atom on lattice sitei is represented asSi[(0,0). Con-
sequently the occupation numbert i on lattice sitei is given
by t i5uSi u and the interaction cos(ui2uj) between two4He
atoms is given by the computationally more favorable sca
product cos(ui2uj)5Si•Sj . The lattice is simple cubic with
periodic boundary conditions andL lattice sites in each di-
rection. The Monte Carlo algorithm is based on various st
dard procedures which we discuss briefly in the following

In order to explore the phase space of the model, t
types of updates are needed:~i! spin flip updates and~ii !
particle insertion and deletion updates. The spin flip upda
are responsible for the creation of long-ranged magnetic
der which in our model represents the normal-superfl
transition. This can be of first or second order depending
the concentrationx512^t i& of 3He (t i50) in the system
~see Fig. 3!. The particle insertion and deletion updates a
responsible for the demixing transition~phase separation! in
our model. This transition can also be first or second or
depending on the coupling constants in the model~see Figs.
1 and 2!. In our simulation we are primarily interested in th
regime of coupling constants, for which the phase diagr
resembles that of actual3He-4He mixtures~Fig. 3! and there-
fore the possibility of a second-order~critical! demixing
transition is not taken into account for the selection of t
Monte Carlo moves. We therefore use the following metho
in our Monte Carlo simulation:~i! single particle insertion
and deletion and~ii ! single spin flip according to the Me
tropolis algorithm@26#, ~iii ! single cluster spin flip according
to the Wolff algorithm@27#, and~iv! overrelaxation updates
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of the spin degrees of freedom at constant configuratio
energy @28#. For each particle insertion or single spin fl
move the new spin state is randomly selected from the e
distribution on the unit circle. The projection vector for th
embedding part of the Wolff algorithm@27# is also chosen
randomly from the even distribution on the unit circle.

The above update methods are performed in sweeps
the whole lattice, whereeachspin flip sweep~ii !, ~iii !, or ~iv!
is preceded by a Metropolis particle insertion and delet
sweep~i!. Cluster updates of the particle configuration a
cording to the embedding algorithm of Ref.@27# are disre-
garded, because the critical demixing transition will not
explored here.

The three basic Monte Carlo updates~ii !–~iv! outlined
above are combined according to the hybrid Monte Ca
idea @29# to ensure efficient configuration space explorat
also for second-order~critical! transitions to long-ranged
magnetic order. One hybrid Monte Carlo step consists of
individual steps, each of which can be one of the upda
listed above. The Metropolis and the Wolff algorithm wo
the standard way, in which the acceptance probabilityp of a
proposed spin flip in the Metropolis algorithm is defined
the local heat bath rule

p~DE!51/@exp~DE/kBT!11#, ~29!

where DE is the change in configurational energy of t
proposed move. The overrelaxation part of the algorithm p
forms a microcanonical update of the configuration by
quentially reflecting each spin in the lattice at the direction
the local field, i.e., the sum of the nearest-neighbor sp
such that its contribution to the energy of the whole config
ration remains constant. The implementation of this upd
scheme is straightforward, because according to Eq.~1! the
energy of a spin with respect to its neighborhood has
functional form of a scalar product. The form hybrid Mon
Carlo step depends on the region of the phase-diagram t
explored. In the vicinity of the first-order phase separat
line typically six Metropolis (M ), one single cluster Wolff
(C), and three overrelaxation~O! updates are performed
The individual updates are mixed automatically in the p
gram to generate the update sequenceM M O M O M M O M
C for the magnetic degrees of freedom.

The random number generator is the shift register gen
tor R1279 defined by the recursion relationXn5Xn2p
% Xn2q for (p,q)5(1279,1063). Generators like these a
known to cause systematic errors in combination with
Wolff algorithm @30#. However, for lags (p,q) used here
these errors are far smaller than typical statistical err
They are further reduced by the hybrid nature of the al
rithm @29#.

The hybrid algorithm is well suited to explore secon
order phase transitions. However, it is unable to overco
the exponential slowing down of the algorithms included
our hybrid scheme in the vicinity of a first-order transitio
e.g., the first-order magnetic~i.e., superfluid! transition for
higher concentrations of3He particles, i.e., for occupatio
numberst i50 in our model. In order to resolve this proble
while keeping the benefits of the hybrid scheme we h
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embedded the hybrid Monte Carlo method in a simula
tempering environment@31#. According to the simulated
tempering idea the temperature is treated as a random
able which performs a random walk inside a predefined te
perature interval. In our simulation this temperature inter
is represented by a discrete set of temperatures, which
spaced closely enough to allow sufficient overlap of the c
responding energy distribution functions. The required
weighting factors@31# are estimated from short runs, one f
each pair of neighboring temperatures, and checkeda poste-
riori by monitoring the probability distribution of the
temperatures—which should be essentially flat—during
production run. Deviations of up to 20% from a flat tempe
ture distribution are tolerated.

The Monte Carlo scheme described above is employed
lattice sizesL betweenL512 andL560. For each choice o
parameters we have performed at least 12 blocks of 103 hy-
brid steps for equilibration followed by another 103 hybrid
steps to estimate the reweighting factors for each pair
neighboring temperatures and finally followed by 43104 hy-
brid steps for measurements. The measurement block is
trolled by an outer loop in which a new temperature is p
posed according to the predetermined weight factors@31#
after each hybrid Monte Carlo step. Apart from standa
thermodynamic quantities the distribution functions of t
total energy, the density, and the modulus of the magnet
tion are monitored using histogram reweighting and extra
lation techniques@32# within the measurement block. The
statistical errors are estimated following standard procedu
resulting from the statistical independence of different m
surement blocks. Unless otherwise stated, all error b
quoted in the following correspond to one standard dev
tion. They are displayed only when they exceed the sym
sizes. The simulations have been performed on DEC Al
Workstations and Pentium III PCs.

V. MONTE CARLO RESULTS

Our primary interest in this study is to use Eq.~1! to
model 3He-4He mixtures in the tricritical region and w
therefore restrict the numerical investigation of the statisti
model described by Eq.~1! to the caseJ5K for which the
phase diagram corresponding to this model Hamiltonian
the same topology as for the liquid phases of3He-4He mix-
tures. The tricritical point marks the onset of demixing into
spin (4He) rich fluid and a vacancy (3He) rich fluid, where
the spin rich fluid simultaneously exhibits long-ranged ma
netic order of theXY type ~superfluidity!.

The phase diagram is most conveniently investigated
the inspection of distribution functions~histograms! for vari-
ous thermodynamic quantities@33#. However, the computa
tional expense of the method described in Ref.@33# in d
52 is prohibitive ind53 for any appreciable system size
We therefore resort to a simpler, though less accurate,
proach which allows us to treat larger systems and is ac
rate enough for our purposes. In the following all tempe
tures are measured in units of the critical temperatureTs(0)
of theXY model on a simple cubic lattice ind53, which is
given byKc[J/@kBTs(0)#50.454 15(5)@34#. The chemical
7-7
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MACIOŁEK, KRECH, AND DIETRICH PHYSICAL REVIEW E69, 036117 ~2004!
potential D is measured in units of the magnetic coupli
constantJ @see Eq.~1!#.

A. Order parameter distribution at tricriticality

The key feature of the3He-4He phase diagram is the pre
ence of a tricritical point. The task to locate the tricritic
point for the model Hamiltonian given by Eq.~1! is aided by
the observation thatd53 is the upper critical dimension fo
tricriticality. It is therefore reasonable to assume that the d
tribution function of the magnetic order parameter essenti
takes the mean-field~Landau! form. We will give somea
posteriorievidence below that this assumption is indeed c
rect, but an accurate numerical proof of it is beyond
scope of this paper.

The magnetic order parameter, i.e., the magnetizatio
defined by

M5~Mx ,M y![L23(
i

t iSi , ~30!

where t i50,1 characterizes the presence of3He or 4He at
lattice sitei andSi5(cosui ,sinui) is the standard spin vari
able of theXYmodel. In terms of the modulusm[uM u of the
order parameter the distribution functionP(m) is assumed to
take the form

P~m!5P0mexp~2Am22Bm42Cm6! ~31!

according to Landau theory in the tricritical region, whe
the absence of symmetry-breaking fields is assumed.
parametersA, B, and C essentially play the role of the
Landau-Ginzburg model parameters~see Sec. VI below! and
they depend on the temperatureT and the chemical potentia
D @see Eq.~1!#, whereC is manifestly positive, butA andB
may change sign. For system sizesL512, 18, 24, 36, 48,
and 60 simulations have been performed along various p
in the (T,D) plane of the phase diagram and the data
corded forP(m) have been fitted according to Eq.~31! using
P0 , A, B, andC as fit parameters. For each system sizeL a
pseudotricritical point@Tt(L),D t(L)# has been identified by
the requirementA5B50 within the corresponding statist
cal error. It turns out that Eq.~31! indeed captures the shap
of P(m) rather accurately over several orders of magnitu
for P in the pseudotricritical regime~see below!. In particu-
lar, higher powers ofm compatible with the symmetry suc
asm8 can be safely ignored. Possible logarithmic correctio
to P(m) @35# could not be identified from the numerical da
unambiguously. We will comment on other logarithmic co
rections later.

B. The tricritical point

From the procedure outlined above we obtain a seque
of pseudotricritical points@Tt(L),D t(L)# which can be ex-
trapolated to the bulk limitL→`. In order to do this one ha
to identify the functional form of theL dependence of the
pseudotricritical point. Within our mean-field picture of th
tricritical behavior of our model the coefficientsA andB in
Eq. ~31! are given by the linear combination
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AD 5MS T2Tt

D2D t
D ~32!

in the vicinity of the tricritical point, whereM is the coef-
ficient matrix. From Eq.~32! and finite-size scaling argu
ments one concludes that for sufficiently largeL, Tt(L)2Tt
and D t(L)2D t are governed by a linear combination
L2dA andL2dB, wheredA anddB are the scaling dimension
of the parametersA and B in Eq. ~31! given by dA52 and
dB51 apart from logarithmic corrections@35#. We therefore
arrive at the following functional form ofTt(L) andD t(L):

Tt~L !5Tt1
t1

L
1

t2

L2
,

D t~L !5D t1
d1

L
1

d2

L2
, ~33!

where the coefficientst1 , t2 , d1, and d2 can be obtained
from the inverse matrixM 21 and the finite-size relations

A5aL22 and B5bL21 ~34!

for A andB evaluated at (T,D)5@Tt(L),D t(L)# for any sys-
tem sizeL. The coefficientsa andb are nonuniversal metric
factors. Equation~33! is used to fit the numerical data fo
Tt(L) andD t(L) in order to obtain an estimate for the loc
tion of the tricritical point. Logarithmic corrections as give
in Ref. @35# can be included in Eq.~33!, but they are omitted
here because the quality of fit does not change substant
when they are included. The results are shown in Figs. 4
5. The finite-size behavior ofTt(L) andD t(L) is accurately
captured by Eq.~33!. Both the coefficientst1 , t2 andd1 , d2
have the same sign and the second coefficient is substan
larger that the first one in both cases. Therefore both coe
cients must be kept in order to obtain an acceptable fit. T

FIG. 4. Pseudotricritical temperatureTt(L)(3) vs 1/L mea-
sured in units of the critical temperatureTs(0) of theXY model on
a s.c. lattice ind53 for J5K @see Eq.~1!#. L is in units of lattice
constant. Error bars correspond to one standard deviation. The
line shows the fit of Eq.~33! to the numerical data. The arrow
indicates the extrapolated valueTt ~see main text!. The reducedx2

of the fit is 0.15.
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quality of fit can be measured in terms of the reducedx2

which is 0.15 in Fig. 4 and 0.42 in Fig. 5. We thus obtain t
extrapolated values

Tt /Ts~0!50.7438~4!, D t /J53.436~2! ~35!

as our estimate for the location of the tricritical point, whe
the statistical uncertainty affects the last digit by the amo
given in parentheses. In these units the coefficients in
~33! are given by

t1 /Ts~0!50.2360.02, t2 /Ts~0!51.3460.24,

d1 /J521.0560.11, d2 /J528.561.4. ~36!

Another aspect of Eq.~33! is field mixing @33#, because the
finite-size correctionsL21 and L22 are uniquely related to
the coefficients~scaling fields! B andA in Eq. ~31!, respec-
tively. In the vicinity of the tricritical point one therefore
obtains from Eqs.~32!, ~33!, and~34! by a matrix inversion

S B/b

A/aD 5
1

t1d22t2d1
S d2 2t2

2d1 t1
D S T2Tt

D2D t
D . ~37!

According to our mean-field picture of tricriticality ind53
the coexistence lineD5D̄(T) in the vicinity of T5Tt should
be associated with the lineB5const50 in the vicinity of
A50. If we linearize the coexistence line near the tricritic
point according to

D̄~T!5D t1D t8~T2Tt! ~38!

we obtain from Eqs.~36! and ~37! for the slopeD t8 at the
tricritical point

D t85d2 /t25~6.462.2!J/Ts~0!. ~39!

Despite its large statistical error this result serves as a v
able guideline for the further exploration of the phase d
gram.

FIG. 5. Pseudotricritical chemical potentialD t(L) (3) vs 1/L
measured in units of the coupling constantJ @see Eq.~1!# for J
5K. L is in units of lattice constant. Error bars correspond to o
standard deviation. The solid line shows the fit of Eq.~33! to the
numerical data. The arrow indicates the extrapolated valueD t ~see
main text!. The reducedx2 of the fit is 0.42.
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The foundation of the above estimates is the quality of
fits of Eq. ~31! to the measured order parameter distributi
functions. We illustrate the quality of these fits in Fig. 6 f
L536 at the corresponding pseudotricritical pointT
5Tt(36) andD5D t(36). The shape of the distribution func
tion P is essentially captured by Eq.~31! over more than
three orders of magnitude. The parametersA and B vanish
within their statistical errors. The reducedx2 of the fit is
0.71. If A5B50 is enforced, i.e, the fit is performed onl
with the parametersP0 and C, the reducedx2 increases to
0.92. For all other system sizes investigated the situatio
similar. We will return to the finite size behavior ofP(m)
after the discussion of finite-size scaling.

C. Finite-size scaling

A naive finite-size scaling ansatz for a thermodynam
quantityX(A,B,L) near a tricritical point ind53 is given by
@compare Eq.~31!#

X~A,B,L !5L2dXf X~AL2,BL!, ~40!

where f X(x,y) is the finite-size scaling function associate
with the quantityX and dX is its scaling dimension. Loga
rithmic corrections have been disregarded for simplicity. F
the sequence of the pseudotricritical points (T,D)
5@Tt(L),D t(L)# one hasA5aL22 and B5bL21 @see Eq.
~34!#. In this case one therefore expectsX to display the
scaling behavior

X~aL22,bL21,L !5L2dXf X~a,b![X0L2dX, ~41!

which can be conveniently checked numerically. Howev
near tricritical points ind53 one has to consider logarithmi
corrections to the naive scaling and these have been ex
ined in Ref.@35#. We therefore only quote the results corr
sponding to Eq.~41! for the average magnetization^m&, the
specific heatC, and the magnetic susceptibilityX. One ob-
tains

^m&5m0S L

l 0
D 21/2S ln

L

l 0
D 1/4

,

e

FIG. 6. Least square fit of Eq.~31! ~solid line! to the simulation
data forP(m) for L536 atT5Tt(36) andD5D t(36) (3) corre-
sponding toA5B50. All data points except very few are con
nected by the fit function within their error bars. The reducedx2 of
the fit is 0.71.P(m) andm are dimensionless.
7-9
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C5C0

L

l 0
S ln

L

l 0
D 1/2

,

X5X0S L

l 0
D 2S ln

L

l 0
D 1/4

, ~42!

where the nonuniversal amplitudesm0 , C0 , X0 and the
length scalel 0 are used as fit parameters. The correspond
results are summarized in Figs. 7–9. The data are compa
with the finite-size scaling behavior given by Eq.~42! ~solid
lines!. The logarithmic corrections turn out to be essent
Disregarding these leads to pure mean-field behavior wh
is not compatible with the data~dashed lines!. For the spe-
cific heat displayed in Fig. 8 deviations from the expec
behavior occur for larger system sizesL548 and L560.
These may be due to the proximity to the first-order dem
ing transition, which is characterized by a finite latent he
Including a finite background contribution to the speci
heat as an additional fit parameter does not improve the

FIG. 7. Least square fit of Eq.~42! ~solid line! to the simulation
data for^m& ~dimensionless! (3). A fit to pure mean-field behavio
is shown for comparison~dashed line!. Data and fit are normalized
to the amplitudem0 and l 051.360.3. ForL518 andL560 the
data points deviate from the fit curve~solid line! by an amount
larger than the statistical error.L is in units of lattice constant.

FIG. 8. Least square fit of Eq.~42! ~solid line! to the simulation
data for the specific heatC (3). A fit to pure mean-field behavior is
shown for comparison~dashed line!. Inclusion of a background
contribution toC as an additional fit parameter does not improve
fit. Data and fit are normalized to the amplitudeC0 and l 056.3
60.5. The deviations from the expected behavior~solid line! for
larger systems may be due to the vicinity of the first-order demix
transition.L is in units of lattice constant.
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In particular, the attempt to fit pure mean-field behavior
the data shown in Fig. 8 leads to a negative value for
background specific heat which is inconsistent with therm
dynamics. The susceptibility shown in Fig. 9 appears
agree with the expectation for all system sizes whereas
average magnetization shown in Fig. 7 displays a devia
for L560. The values ofl 0 obtained from the fits shown in
Figs. 8 and 9 are consistent (l 056.360.5 and l 056.2
60.4, respectively! whereasl 051.360.3 obtained from̂m&
according to Fig. 7 deviates strongly from the aforeme
tioned estimates forl 0. One of the reasons may be that^m&
depends rather weakly onL and l 0 as compared toC andX.
Therefore the estimation ofl 0 from ^m& is more susceptible
to statistical or systematic errors in the magnetization d
The large relative error of the actual estimatel 051.360.3
seems to indicate this. Corrections to the leading asympt
behavior given by Eq.~42!, which cannot be taken into ac
count on our current data basis, may therefore also pla
role.

The scaling behavior of the order parameter distribut
function P(m) within the scope of Eq.~31! is determined by
the finite-size behavior of the parameterC. In order to com-
pensate the finite-size effects induced by^m& we define the
effective coupling parameter

Ce f f[C^m&6, ~43!

whereC is taken from the fit of Eq.~31! to the distribution
function data along the sequence of the pseudotricrit
points (A5B50) and^m& is taken from the fit of Eq.~42! to
the magnetization data. The numerical result forCe f f accord-
ing to Eq. ~43! is displayed in Fig. 10 which shows a slo
but systematic decrease ofCe f f with the system size. Ac-
cording to the renormalization-group theory of tricritical b
havior Ce f f should play the role of the coupling constant
tricriticality, which is a dangerous irrelevant variable ind
53 @35#. We therefore expect the finite-size behavior@35#

Ce f f~L !5S c01c1ln
L

l 0
D 21

~44!

e

g

FIG. 9. Least square fit of Eq.~42! ~solid line! to the simulation
data for magnetic susceptibilityX (3). A fit to pure mean-field
behavior is shown for comparison~dashed line!. Data and fit are
normalized to the amplitudeX0 and l 056.260.4. L is in units of
lattice constant.
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PHASE DIAGRAM OF A MODEL FOR3He-4He . . . PHYSICAL REVIEW E 69, 036117 ~2004!
for the effective coupling parameter, wherel 056.2 is taken
from Fig. 9 andc0 andc1 serve as fit parameters to the da
The solid line in Fig. 10 displays this fit withc059.960.2
andc151.660.1 and demonstrates that the expected beh
ior according to Eq.~44! is consistent with the data.

The degree of agreement between the finite-size sca
behavior observed and expected may also be considere
ana posterioriconfirmation that the sequence of the pseu
tricritical points gives a reasonable estimate for the locat
of the tricritical point. However, some confirmation from
different source would still be desirable.

D. Other distribution functions and the cumulant method

In order to locate the first-order coexistence line one m
inspect the distribution functionP(n) of the particle density

n[L23(
i

t i . ~45!

Near a first-order demixing transitionP(n) displays two
peaks, one at a higher density corresponding to the
(4He) rich liquid and one at a lower density corresponding
the vacancy (3He) rich liquid. At the tricritical point the two
peaks coalesce and they separate increasingly as one fo
the two-phase coexistence line towards lower temperatu
As a criterion to locate the coexistence line one may dem
that the ratio of the statistical weights of the two liquids, i.
the ratio of the areas under the respective peaks ofP(n),
should not depend on temperature. However, this criterio
only approximate, becausea priori it is not clear what the
value of the weight ratio should be. An accurate criterion c
be obtained from the evaluation of the field mixing@33# @see
Eq. ~37!#. From thermodynamic considerations one may
termine a linear combination of particle and energy den
such that the corresponding distribution function is symm
ric on the coexistence line@33#. The generally unknown
value of the weight ratio then has to be unity at coexisten
In principle, one may determine the correct mixing ratio
the densities from Eqs.~36! and~37!. However, the statistica

FIG. 10. Effective coupling parameterCe f f ~dimensionless! ac-
cording to Eq.~43! (3) and a least square fit of Eq.~44! to the data
~solid line!. The observed decrease ofCe f f is compatible with the
logarithmic behavior of a dangerous irrelevant variable at the up
critical dimension. The reducedx2 of the fit is 0.16.L is in units of
lattice constant.
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uncertainties of the coefficients given by Eq.~36! are too
large for this purpose and their accurate evaluation is bey
the scope of this work.

For the vector BEG model the task of locating the fir
order coexistence line is aided by the observation that
spin rich fluid displays long-ranged XY type~superfluid! or-
der when the demixing transition occurs. Apart from the p
ticle density distribution@see Eq.~45!# we therefore also ob-
serve the distribution function of the magnetic energy den
«m defined by

«m[2JL23(̂
i j &

t i t j cos~u i2u j !. ~46!

For our choiceJ5K the demixing transition will also be
indicated by a double peak structure of the distribution fu
tion P(«m). Note that this will no longer be the case fo
sufficiently largeK.J, for which the demixing transition
precedes the onset of long-ranged magnetic order. By m
toring both distribution functions along various paths in t
(T,D) plane of the phase diagram and by applying the c
stant weight ratio criterion to both we have redetermined
slope of the coexistence line in the vicinity of (Tt ,D t) @see
Eq. ~35!# and found

D t85~5.060.1!J/Ts~0!. ~47!

Note that the new estimate given by Eq.~47! is consistent
with the previous one given by Eq.~39!. We furthermore
observe that the two peaks indeed merge into a single
broader one very close to the estimate of (Tt ,D t) given by
Eq. ~35!. We illustrate this forP(n) in Fig. 11 for L536
along a straight path in the phase diagram according to
~38! for the choiceTt /Ts(0)50.7439, D t /J53.438, and
D t855.0J/Ts(0) @see Eq.~47!# for three temperatures. In or
der to obtain a clear double peak structure inP(n) including
the transition from and to a single peak along the cho
path, a substantial amount of finetuning for bothTt andD t is
required even for moderate system sizes. It is therefore v
comforting that the values forTt and D t required to obtain

er

FIG. 11. Particle density distributionP(n) ~dimensionless! for
three temperatures along a straight path given by Eq.~38! in the
tricritical region as proposed by Eq.~35!. The temperatures chose
are T/Ts(0)50.7479 (3), T/Ts(0)50.7439 (1), and T/Ts(0)
50.7399(*). The parameters of Eq.~38! are Tt /Ts(0)50.7439,
D t /J53.438, andD t855.0J/Ts(0). P andn are dimensionless.
7-11
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Fig. 11 are already within the error bars of the extrapolat
estimate of the tricritical point given by Eq.~35!. The struc-
ture ofP(«m) essentially looks the same so we do not rep
duce it here.

The location of the tricritical point along the coexisten
line can be identified by a cumulant crossing of a suita
chosen density@33#. As we have not evaluated the field mix
ing here we use the cumulants of the magnetic energy d
sity defined by Eq.~46! in order to investigate the cumulan
crossing along the straight path used in Fig. 11. We de
the Binder cumulant ratio for«m by

U«m
[12

Š~«m2^«m&!4
‹

3Š~«m2^«m&!2
‹

2
. ~48!

The cumulantU«m
as a function of temperature for differen

system sizes is shown in Fig. 12. A unique crossing can
be identified. However, the various crossings occur roug
where they are expected according to Eq.~35!. If the smallest
systemL512 is excluded, the crossings are located in
temperature interval 0.743,T/Ts(0),0.747 which includes
the estimate given by Eq.~35! near the lower bound. The
crossings for larger systems tend to occur at lower temp
tures. One of the reasons that a unique crossing does
occur is that both«m andn contain corrections to the orde
parameter of the demixing transition which can only
eliminated by a properly chosen linear combination of th
quantities@33#. A second reason is insufficient fine tuning f
larger systems, which becomes visible in the nonmonoto
behavior of U«m

for L536 at lower temperatures whic

leads to a second intersection withU«m
for L524. Despite

the quantitative shortcomings of Fig. 12, the investigation
the cumulant crossing in combination with the other e
dence presented above provides some independent confi
tion that our initial assertion about the shape of the tricriti
order parameter distribution function according to Eq.~31! is
correct within the accuracy needed for the purpose of
work.

Considerations in the spirit of Landau mean-field theo
have played a major role in the analysis of our numeri

FIG. 12. Cumulant ratioU«m
~dimensionless! according to Eq.

~48! as a function of temperature along the straight path used in
11 for L512 (3), L518 (1), L524 (*), andL536 (h). Pairs
of symbols are connected linearly to guide the eye. A unique cr
ing cannot be identified~see main text!.
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data in the tricritical region. We therefore now turn to a d
tailed derivation of the Ginzburg-Landau model in the t
critical region of the vector BEG model.

VI. LANDAU-GINZBURG MODEL
FOR 3He-4He MIXTURES

In this section we derive a two-parameter LG model d
scribing bulk 3He-4He mixtures near tricriticality. This deri-
vation follows the construction of thef4 model for the stan-
dard critical phenomena from the Ising model.

A. Derivation of the model

Our starting point is the modified VBEG model for whic
instead of continuum orientations of the spin vectorSi

5(cosui ,sinui) we consider L discrete orientationsu i
( l )

52p l /L, l 51, . . . ,L, uniformly distributed over the unit
circle with L→`. With each orientation Si

( l )

5(cosu i
(l) ,sinu i

(l) ) at the sitei we associate the densityt i ,l

with discrete values 0 or 1. The total density of4He at the
site i is

t i5(
l 51

L

t i ,l . ~49!

As in the VBEG model, we consider the close-packing ca
in which a 3He atom at sitei corresponds tot i50 and a4He
atom to t i51. Thus a lattice sitei is either occupied by a
3He atom (t i50) or a 4He atom associated with one of th
L orientations (t i ,l51 for l 5 l 0 ,t i ,l50 otherwise, so thatt i

5( l 51
L t i ,l51). The Hamiltonian of this effectively

(L11)-component mixture has the form

H52(̂
i j &

H J(
l 51

L

(
l 851

L

t i ,l t j ,l 8Si
( l )
•Sj

( l 8)1Kti t jJ 1D(
i

t i ,

~50!

whereSi
( l )
•Sj

( l 8)5cos(ui
(l)2uj

(l8)).
In the Landau-Ginzburg model the effective Hamiltonia

depending on the local order-parameter fields, is obtaine
a result of coarse-graining procedures. The procedure w
gives an exact functional representation for the partit
function for the corresponding microscopic Hamiltonian
the Hubbard-Stratonovitch transformation. The applicat
of this method, however, is limited to microscopic Hamilt
nians that can be expressed as a quadratic form. Here we
another approach@36#.

Within the standard mean-field treatment of the lattice g
mixture defined by the Hamiltonian in Eq.~50!, the
ensemble-averaged occupancyr i ,l5^t i ,l& of the sitei is ob-
tained by minimizing the grand canonical function

VMF~r i ,l !5H~r i ,l !1(
i

f id~r i ,l ! ~51!

g.

s-
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at fixedT andD. The resulting minimum ofVMF equals the
equilibrium grand potentialV0. The ideal or noninteracting
free-energy density for a (L11) component mixture on the
close-packed lattice is@19#

f id~r i ,l !5kBTH ~12r i !ln~12r i !1(
l 51

L

r i ,l ln r i ,lJ
~52!

with r i5( l 51
L r i ,l .

In the following we shall treatr i and r i ,l as coarse-
grained order parameter fields and adopt the mean-
grand canonical functionVMF form for the free energy of a
particular local configuration of the order parameter. In
spatially uniform and orientationally disordered phase
equilibrium values ofr i ,l are constant and denoted b
^r i ,l&5Q/L so that ^r i&5Q. The actual values fluctuat
around these mean values:

r i5Q1f i , ~53!

r i ,l5
Q

L
1

f i

L
1Dr i ,l5

r i

L
1Dr i ,l , ~54!

which implies^f i&50 and( lDr i ,l50 even without taking
the thermal average. The fluctuation of the densityr i ,l at the
site i consists of an orientationally uniform partf i /L related
to the fluctuationf i of the total 4He density, which is the
same for all orientations, and a contributionDr i ,l as an ex-
cess density of4He in the orientationSi

( l ) .
Assuming Dr i ,l and f i to be small we expand

VMF(r i ,r i ,l) in power series of the fluctuation fieldsDr i ,l

and f i about the equilibrium valueV0
MF(r i5Q,r i ,l

5Q/L). Since we aim for deriving an effective Hamiltonia
describing bulk3He-4He mixtures near tricriticality, in the
expansion we keep terms to the sixth order inDr i ,l and to
quadratic order inf i . A standard Taylor expansion gives

VMF~r i ,r i ,l !2V0
MF~Q,Q/L !5(

j 52

6

V j
MF~f i ,Dr i ,l !.

~55!

The contribution linear in the fluctuation fieldsV1
MF van-

ishes since we expandVMF around its minimum. The othe
terms are

V2
MF~f i ,Dr i ,l !

52(
^ i , j &

H Kf if j1J(
l 51

L

(
l 851

L

Dr i ,lDr j ,l 8Si
( l )
•Sj

( l 8)J
1

kBT

2 (
i

H 1

Q~12Q!
f i

21(
l 51

L
L

Q
~Dr i ,l !

2J , ~56!
03611
ld

e
e

V3
MF~f i ,Dr i ,l !

52
kBT

2 (
i

(
l 51

L H L

Q2
f i~Dr i ,l !

21
1

3

L2

Q2
~Dr i ,l !

3J ,

~57!

V4
MF~f i ,Dr i ,l !5

kBT

2 (
i

(
l 51

L H 2

3

L2

Q3
f i~Dr i ,l !

3

1
L

Q3
f i

2~Dr i ,l !
21

1

6

L3

Q3
~Dr i ,l !

4J ,

~58!

V5
MF~f i ,Dr i ,l !52

kBT

2 (
i

(
l 51

L H 1

2

L3

Q4
f i~Dr i ,l !

4

1
L2

Q4
f i

2~Dr i ,l !
31

1

10

L4

Q4
~Dr i ,l !

5J ,

~59!

V6
MF~f i ,Dr i ,l !5

kBT

2 (
i

(
l 51

L H 2

5

L4

Q5
f i~Dr i ,l !

5

1
L3

Q5
f i

2~Dr i ,l !
41

1

15

L5

Q5
~Dr i ,l !

6J .

~60!

The excess density in the orientationSi
( l ) is a periodic

function of l with period L. Therefore, it can be expande
into a discrete Fourier series

Dr i ,l5
Q

2L (
k51

L21

ui ,ke
i (2p/L)kl, ~61!

where we have chosen (Q/2L) as a normalization constan
The term corresponding tok50 is excluded from the expan
sion due to the constraint( l 51

L Dr i ,l50. SinceDr i ,l is a real
function, the Fourier componentsui ,k andui ,L2k are related
by ui ,k* 5ui ,L2k . Now, we neglect higher modes in the Fo
rier expansion~61! and approximate the excess density in t
orientationSi

( l ) by

Dr i ,l'
Q

2L
~ui ,1e

i (2p/L) l1ui ,L21e2 i (2p/L) l !. ~62!

Using ui ,k* 5ui ,L2k and expressingui ,1 in terms of its ampli-
tude uui u and a phasez i we write Eq.~62! as

Dr i ,l'
Q

2L
uui u~ei (2p/L) l 1z i1e2 i „(2p/L) l 1j i …!

5
Q

L
uui ucos@~2p/L !l 1z i #5

Q

L
Si

( l )
•ui , ~63!
7-13
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whereui[uui uexp(izi).
The approximation~63! is a ‘‘coarse-graining’’ procedure

which reduces degrees of freedom. TheL21 independent
quantities describing the orientational degrees of freedom
replaced by a two-component vector fieldui .

We define the effective Hamiltonian for the order para
eter fieldsf andu as

Ve f f~f i ,ui ![VMF~r i ,r i ,l !2V0
MF~Q,Q/L !. ~64!

Using Eq.~63! in Eqs.~56–60! we obtain

Ve f f5V2
e f f1V int

e f f ~65!

with

V2
e f f~f i ,ui !52(

^ i , j &
H Kf if j1

Q2

L2
J(

l 51

L

(
l 851

L

~Si
( l )
•ui !

3~Sj
( l 8)

•uj !Si
( l )
•Sj

( l 8)J
1

kBT

2 (
i

H 1

Q~12Q!
f i

2

1
Q

L (
l 51

L

~Si
( l )
•ui !

2J , ~66!

V int
e f f5

kBT

2 (
i

H 2f i

1

L (
l 51

L

~Si
( l )
•ui !

2

1f i
2 1

QL (
l 51

L

~Si
( l )
•ui !

21
1

6

Q

L (
l 51

L

~Si
( l )
•ui !

4

2
1

2
f i

1

L (
l 51

L

~Si
( l )
•ui !

41f i
2 1

QL (
l 51

L

~Si
( l )
•ui !

4

1
1

15

Q

L (
l 51

L

~Si
( l )
•ui !

6J . ~67!

We note that in the above expression terms containing s
over all orientations of odd powers of (Si

( l )
•ui) vanish.

As the next step we take the limitL→`. This amounts to
replacing (1/L)( l 51

L by (1/2p)*0
(2p)du and leads to the fol-

lowing relations@Si
( l )5(cosui

(l) ,sinui
(l))#:

Q

L (
l 51

L

~Si
( l )
•ui !

2→ Q

2pE0

2p

du i
( l )~Si

( l )
•ui !

25
Q

2
uui u2,

~68!

Q

L (
l 51

L

~Si
( l )
•ui !

4→ Q

2pE0

2p

du i
( l )~Si

( l )
•ui !

45
3Q

8
uui u4,

~69!
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Q

L (
l 51

L

~Si
( l )
•ui !

6→ Q

2pE0

2p

du i
( l )~Si

( l )
•ui !

65
5Q

16
uui u6,

~70!

and

Q2

L2 (
l 51

L

(
l 851

L

~Si
( l )
•ui !~Sj

( l 8)
•uj !Si

( l )
•Sj

( l 8)

→ Q2

4p2E0

2p

du i
( l )E

0

2p

du j
( l 8)~Si

( l )
•ui !~Sj

( l 8)
•uj !Si

( l )
•Sj

( l 8)

5
Q2

4
ui•uj . ~71!

Finally, we assume that the fluctuating fieldsf i andui vary
slowly on the length scale of the lattice constanta. The con-
tinuum limit is obtained by consideringa→0, consideringi
as a continuous variabler , andf i andui turning intof(r )
and u(r ), respectively, while keeping the total volumeV
5a3N fixed. In this limit, one has

(
i

→a23E dr . ~72!

For f being the smooth continuation to continuous argume
of a function defined on a lattice we use the following a
proximations (a→0):

(
k51

d

f ~r1aek!→d f~r !1a(
k51

d
] f

]r k
1

a2

2 (
k51

d
]2f

]r k
2

1•••

~73!

and

(
k51

d

$ f ~r1aek!1 f ~r2aek!%→2d f~r !1a2(
k51

d
]2f

]r k
2

1•••,

~74!

whereek ,k51, . . . ,d are the unit lattice vectors. Thus

(
^ i , j &

f i f j→
1

2
a23E d3r (

k51

d

f ~r !$ f ~r1aek!1 f ~r2aek!%

→ 1

2
a23E d3r $2d f2~r !2a2~“ f !2%. ~75!

As a result Eq.~64! is replaced by

Ve f f5K@VG1V int# ~76!

with the Gaussian contributionVG , in which the fieldsf
andu are uncoupled,

VG5E dr H 1

2
a1f21

1

2
~“f!21

1

2
a2uuu21

1

2
c~“u!2J ,

~77!

and the interaction contribution, which couplesf andu,
7-14
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V int5E dr$r 1fuuu21a12f
2uuu21buuu41r 2fuuu4

1b12f
2uuu41euuu6%, ~78!

where we have chosen the length unit such thata51.
The coupling constants in the effective functional a

given explicitly by

a15
kBT

K

1

Q~12Q!
2z, ~79!

a25
kBT

K

Q

2
2

zQ2

4

J

K
, ~80!

c5
Q2

4

J

K
, ~81!

r 152
1

4

kBT

K
, r 252

3

32

kBT

K
, ~82!

b5
Q

32

kBT

K
, e5

Q

96

kBT

K
, ~83!

a125
1

4Q

kBT

K
, b125

3

16Q

kBT

K
. ~84!

Equations ~77!, ~78!, and ~79!–~84! define the Landau-
Ginzburg model for3He-4He mixtures in terms of thermo
dynamical quantities and two parameters,J andK, character-
izing the system.

B. l line and tricritical point

In this subsection we determine thel line and a tricritical
point within mean-field theory for the LG model derived
the preceding subsection. To this end we consider spat
uniform order parameter fields.

Mean-field theory amounts to approximating the therm
dynamic free energy by the minimum of the effective Ham
tonian which corresponds to the saddle point path contr
tion to the partition function,

bFMF5minf,u bVe f f@f,u#. ~85!

The mean-field solution forf(r ) is determined by

dVe f f

df~r !
50. ~86!

For spatially uniform fields the above minimum conditio
yields the following relation betweenf and uuu:

f~a112a12uuu212b12uuu4!1r 1uuu21r 2uuu450. ~87!

Near a tricritical point both the fieldsf and uuu are small.
Therefore it is sufficient to consider only a linear coupli
betweenuuu2 andf, neglecting the higher-order terms,
03611
lly

-

-

f52
r 1

a1
uuu212

r 1a12

a1
2

uuu41O~ uuu6!. ~88!

Inserting Eq.~88! into Eqs.~77! and ~78! we obtain

Ve f f

V
5

1

2
a2uuu21S b2

1

2

r 1
2

a1
D uuu41e8uuu6 ~89!

with

e85a12

r 1
2

a1
2

2
r 1r 2

a1
1e. ~90!

The conditiona250 yields the equation for the critical line
which is in agreement with Eq.~21!. If a1 is negative,e8 is
positive and there is a tricritical point determined by

a250, b2
1

2

r 1
2

a1
50. ~91!

The solution of these two equations coincides with the
pressions given by Eqs.~23! and ~24!, i.e., the tricritical
point of this LG model is located at the same temperat
and concentration of3He atoms as the tricritical point in th
VBEG model studied in Sec. III within mean-field approx
mation.

VII. SUMMARY AND DISCUSSION

By using molecular-field approximations and Mon
Carlo simulations we have investigated a three-dimensio
version of the generalized spin-1 Blume-Emery-Griffi
model@Eq. ~1!# of 3He-4He mixtures with a two-componen
vector order parameter, mimicking the phase of the wa
function of 4He atoms. This work is a first step to study th
Casimir force and other surface and finite-size effects
3He-4He mixture films near their tricritical point. We hav
obtained the following main results.

~1! The topology of the phase diagram depends on
ratio of the interaction parametersK/J, whereK is related to
the aHe-bHe interactions@Eq. ~2!# and J to the superfluid
density@Eq. ~4!#. There are three different types of the pha
diagram, which are similar to those found in the BEG mod
within the molecular-field approximation. For large values
K/J, i.e., for K/J.2.016 81, there exist three differen
phases: a3He-rich normal fluid, a4He-rich normal fluid, and
a 4He-rich superfluid~see Fig. 1!. As the temperature is low
ered, the mixed normal fluid phase separates into two nor
fluids differing by the concentrationx of 3He. This phase
separation ends at a critical point. At lower temperature,
phase separation is into a superfluid and a normal fluid.
l line Ts(x) of second-order phase transitions between
4He-rich normal fluid and a4He-rich superfluid terminates
at the 4He-rich branch of the phase-separation curve at
critical end point. This ‘‘critical end-point’’ type of the phas
diagram was the only one found in previous studies@15,16#
of the two-dimensional version of the model. In three dime
sions we find two additional topologies of the phase diagr
7-15
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as the ratioK/J is decreased. For 1.4298,K/J,2.016 81
the phase diagram is the richest~see Fig. 2!. As in the pre-
vious case, there are three different phases and a cri
point of the phase-separation curve between two normal
ids differing by the concentration of3He. In addition, there
is a tricritical point at the end of thel line beyond which a
first-order phase transition between a4He-rich superfluid
and a4He-rich normal fluid takes place. There is also a trip
point at which three different phases coexist at different c
centrations. ForK/J,1.4298 the phase diagram simplifie
~see Fig. 3!. There is no longer a4He-rich normal fluid phase
and a critical point. Thel line meets the first-order phase
separation line between4He-rich superfluid and a3He-rich
normal fluid at the tricritical point. Thel line is given by
Ts(x)5zJ(12x)/2, wherez is the coordination number o
the lattice. The temperature of the tricritical point
TA /Ts(0)5(112K/J)/(212K/J) @Eq. ~23!# and the con-
centrationxA of 3He at this point is given byTA /Ts(0)51
2xA @Eq. ~24!#. This type of the phase diagram is, except
the very low temperatures when the Fermi statistic of3He
plays the dominant role, similar to that observed experim
tally, although in our modelxA is always smaller than 0.5
whereasxA

exp50.669. For a given topology of a phase di
gram changing parameters of a model does not affect
main results.

~2! The existence of the tricritical point is confirmed b
Monte Carlo simulations and in the units@Tt /Ts(0),D t /J# it
coincides with the mean-field prediction remarkably w
~see Fig. 3!. At the tricritical point the order parameter dis
tribution function takes its mean-field form, where the pre
ence of logarithmic corrections could not be excluded wit
the accuracy of the existing data. On the other, hand fin
size scaling of several thermodynamic quantities reveals
presence of logarithmic corrections in accordance with th
J.

a

y,

p

v
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retical expectations. The two-phase coexistence line in
(T,D) plane of the phase diagram has been determined f
a constant weight ratio criterion for energy and density h
tograms. The location of the tricritical point is also indicat
by a crossing of the cumulant ratio of the magnetic portion
the energy density measured along the coexistence line~see
Fig. 12!. We conclude that mean-field theory provides a
liable approach for studying the VBEG model ind53.

~3! Starting from the VBEG model and discretizing th
orientations of the spin vector we have derived the c
tinuum Landau-Ginzburg model for3He-4He mixtures near
the tricritical point encompassing the concentration fieldf
and a two-component vector fieldu corresponding to the
orientational order. In the effective Hamiltonian we consid
the modulus ofu up to its sixth power and the fieldf up to
quadratic terms, which is sufficient to study a tricritic
point. The coupling constants appearing in this Land
Ginzburg theory are given explicitly in terms of thermod
namical quantities, the temperature, the mean concentra
of 4He, and the two interaction parametersJ andK charac-
terizing the VBEG model. Mean-field theory for this LG
model yields the same equation for the criticall line as the
molecular-field approximation for the lattice VBEG mode
The LG model provides a linear coupling betweenuuu2 and
f which yields the same coordinates of the tricritical point
the lattice VBEG model.
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